{"title":"非靶向代谢组学揭示原发性系统性硬化症患者的代谢组学特征。","authors":"Jinling Tang, Pinglang Ruan, Zhu Wei","doi":"10.1007/s12010-025-05249-6","DOIUrl":null,"url":null,"abstract":"<p><p>Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by increased morbidity and mortality. The intestinal microbiome and serum metabolites had been implicated in SSc, but the connection between the gut microbiome and serum metabolites remains poorly understood. In this study, we aimed to investigate the relationship between the gut microbiome and serum metabolome in SSc patients. Untargeted metabolomics was employed to examine the metabolic profiles of SSc patients. The results revealed significant alterations in metabolic pathways, particularly beta-alanine metabolism and pyrimidine metabolism in SSc patients. Specifically, reductions in spermine and beta-alanine were observed within beta-alanine metabolism, while uridylic acid decreased in pyrimidine metabolism. Furthermore, fecal microbiome analysis showed an increased relative abundance of Firmicutes, Verrucomicrobia, and Proteobacteria in SSc patients, whereas the abundance of Bacteroidetes and Actinobacteria was reduced at the phylum level. KEGG pathway analysis, combined with transcriptomic analysis of peripheral blood from SSc patients, identified upregulation of Toll-like receptor signaling, TNF signaling, lipid and atherosclerosis pathways, IL-17 signaling, and AMPK signaling. In summary, we performed a comprehensive analysis of the metabolic profile, which may provide insights for understanding the mechanisms of SSc.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Untargeted Metabolomics Revealed Metabolomic Profile in Patients with Primary Systemic Sclerosis.\",\"authors\":\"Jinling Tang, Pinglang Ruan, Zhu Wei\",\"doi\":\"10.1007/s12010-025-05249-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by increased morbidity and mortality. The intestinal microbiome and serum metabolites had been implicated in SSc, but the connection between the gut microbiome and serum metabolites remains poorly understood. In this study, we aimed to investigate the relationship between the gut microbiome and serum metabolome in SSc patients. Untargeted metabolomics was employed to examine the metabolic profiles of SSc patients. The results revealed significant alterations in metabolic pathways, particularly beta-alanine metabolism and pyrimidine metabolism in SSc patients. Specifically, reductions in spermine and beta-alanine were observed within beta-alanine metabolism, while uridylic acid decreased in pyrimidine metabolism. Furthermore, fecal microbiome analysis showed an increased relative abundance of Firmicutes, Verrucomicrobia, and Proteobacteria in SSc patients, whereas the abundance of Bacteroidetes and Actinobacteria was reduced at the phylum level. KEGG pathway analysis, combined with transcriptomic analysis of peripheral blood from SSc patients, identified upregulation of Toll-like receptor signaling, TNF signaling, lipid and atherosclerosis pathways, IL-17 signaling, and AMPK signaling. In summary, we performed a comprehensive analysis of the metabolic profile, which may provide insights for understanding the mechanisms of SSc.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05249-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05249-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Untargeted Metabolomics Revealed Metabolomic Profile in Patients with Primary Systemic Sclerosis.
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by increased morbidity and mortality. The intestinal microbiome and serum metabolites had been implicated in SSc, but the connection between the gut microbiome and serum metabolites remains poorly understood. In this study, we aimed to investigate the relationship between the gut microbiome and serum metabolome in SSc patients. Untargeted metabolomics was employed to examine the metabolic profiles of SSc patients. The results revealed significant alterations in metabolic pathways, particularly beta-alanine metabolism and pyrimidine metabolism in SSc patients. Specifically, reductions in spermine and beta-alanine were observed within beta-alanine metabolism, while uridylic acid decreased in pyrimidine metabolism. Furthermore, fecal microbiome analysis showed an increased relative abundance of Firmicutes, Verrucomicrobia, and Proteobacteria in SSc patients, whereas the abundance of Bacteroidetes and Actinobacteria was reduced at the phylum level. KEGG pathway analysis, combined with transcriptomic analysis of peripheral blood from SSc patients, identified upregulation of Toll-like receptor signaling, TNF signaling, lipid and atherosclerosis pathways, IL-17 signaling, and AMPK signaling. In summary, we performed a comprehensive analysis of the metabolic profile, which may provide insights for understanding the mechanisms of SSc.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.