Applied Biochemistry and Biotechnology最新文献

筛选
英文 中文
Morpho-physiological, Biochemical, and Transcript Analysis Revealed Differential Behavior of Chickpea Genotypes Towards Salinity.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-18 DOI: 10.1007/s12010-025-05192-6
Gurpreet Kaur, Satish Kumar Sanwal, Nirmala Sehrawat, Ashwani Kumar, Anil Kumar Sharma, Anita Mann
{"title":"Morpho-physiological, Biochemical, and Transcript Analysis Revealed Differential Behavior of Chickpea Genotypes Towards Salinity.","authors":"Gurpreet Kaur, Satish Kumar Sanwal, Nirmala Sehrawat, Ashwani Kumar, Anil Kumar Sharma, Anita Mann","doi":"10.1007/s12010-025-05192-6","DOIUrl":"https://doi.org/10.1007/s12010-025-05192-6","url":null,"abstract":"<p><p>Till now, limited information was available on salt tolerance chickpea genotypes. Therefore, in comparison to CSG 8962 (check for salinity tolerance), an experiment on nine chickpea genotypes with different background (BG 1103, DCP 92-3, S7, ICCV 10, BG 256, KWR 108, JG 16, K 850, and ICC 4463) was conducted under medium salt stress of EC<sub>iw</sub> ~ 6 dS m<sup>-1</sup> and high salt stress of 9 dS m<sup>-1</sup> to evaluate their salt tolerance potential. Different morphological, physiological, biochemical, and molecular traits were studied to characterize these genotypes. It was also noted that growth of all the genotypes was affected by salinity, but more reduction was shown by the genotypes BG 256, DCP 92-3, and ICC 4463. Irrigation water loaded with salts disrupted the water relations as displayed by the reducing values of RWC, water potential, and osmotic potential. Chlorophyll content, when compared with control, reduced in the range of 7.06 to 28.93% at moderate salinity level (EC<sub>iw</sub> ~ 6 dS m<sup>-1</sup>) and 23.71 to 55.83% at higher salinity level (EC<sub>iw</sub> ~ 9 dS m<sup>-1</sup>). S7, ICCV 10, KWR 108, and CSG 8962 (salt-tolerant check) maintained optimum gas exchange traits, i.e., photosynthetic rate, stomatal conductance, and transpiration rate with increasing salinity and osmoregulatory compounds, imino acid proline, and total soluble sugars were also higher in these genotypes. Na<sup>+</sup>/K<sup>+</sup> ratio at control was 0.084 and it enhanced with increasing salinity and noted mean genotypic values of 0.399 and 0.758 at moderate and higher salinity levels, respectively. Antioxidative defense mechanism was quite active in the genotypes (S7, ICCV 10, KWR 108, and check CSG 8962) because higher values of antioxidative enzymes and low increment in the content of hydrogen peroxide and malondialdehyde were noted in these genotypes. Based on the results, genotypes with salinity contrasting response (KWR 108 as tolerant and ICC 4463 as sensitive) were selected, and gene expression studies were conducted along with CSG 8962 (the check). It was found that KWR 108 showed higher expression of Δ1-pyrroline-5-carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR), Na<sup>+</sup>/H<sup>+</sup> antiporter (NHX1), and sodium transporter HKT1 and downregulation of proline dehydrogenase gene than the genotype CSG 8962 (salt-tolerant check). So, it was concluded that genotypes, i.e., S7, KWR 108, and ICCV 10, maintained higher physiological and biochemical efficiency in terms of lower ψ<sub>w</sub>, ψ<sub>s</sub>, and membrane stability, higher RWC, photosynthetic rate, and osmolyte accumulation as well as antioxidative enzyme activities in comparison to the salt-tolerant check used in the study. Further, these results were validated through gene expression studies which revealed similar results that categorized these genotypes to be salt tolerant.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the Antibiotic Resistance: Molecular Insights and Combating Therapies.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-18 DOI: 10.1007/s12010-025-05182-8
Preethieswari Palanikumar, Bharathi Nathan, Karthikeyan Muthusamy, Suganthy M, Senthil Natesan, Vellaikumar Sampathrajan
{"title":"Unravelling the Antibiotic Resistance: Molecular Insights and Combating Therapies.","authors":"Preethieswari Palanikumar, Bharathi Nathan, Karthikeyan Muthusamy, Suganthy M, Senthil Natesan, Vellaikumar Sampathrajan","doi":"10.1007/s12010-025-05182-8","DOIUrl":"https://doi.org/10.1007/s12010-025-05182-8","url":null,"abstract":"<p><p>Antibiotics, the full-stop of invasive bacteria, have been used in clinical setups from unthreatening fever to massive challenging therapies. Constant dependency on medication upsurges the evasion of microbes from antibiotics contemporarily along with ecological footprint. Thus, the infested pathogen became resilient to antibiotics, disguised as multidrug-resistant bacteria (MDR), pandrug-resistant bacteria (PDR), and extensively drug-resistant bacteria (XDR). The etymology of genetic modifications and horizontal gene transfer played an external influence on the arising resurgence. Also, intrinsic parameters, such as antibiotic efflux pumps and the formation of biofilms, encouraged intense resistance to antibiotic drugs. This aggravated resistance in microbes builds up resistome in the environment due to selective pressure; thereby drastic devastation of people suffering from disastrous diseases is mournful. Since novelite approaches for broad-spectrum antibiotics against drug resistance microbes are grueling challenges in these crucial times. This scientific study has come up with neoteric methodologies to elude immediate consequences and health hazards. Inculcating ancestral treatment towards pharmacognosy as adjuvants to the prevailing hi-fi nanotechnology, phage and algal therapy, genome mining, and bioinformatics databases are the optimizing inventions for actual and prospective living.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metagenomic Analysis of Microbial Community Associated with Food Waste Composting.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-17 DOI: 10.1007/s12010-025-05203-6
Jayanta Andraskar, Debishree Khan, Shailendra Yadav, Atya Kapley
{"title":"Metagenomic Analysis of Microbial Community Associated with Food Waste Composting.","authors":"Jayanta Andraskar, Debishree Khan, Shailendra Yadav, Atya Kapley","doi":"10.1007/s12010-025-05203-6","DOIUrl":"https://doi.org/10.1007/s12010-025-05203-6","url":null,"abstract":"<p><p>Food waste is an increasing cause of concern in India. Its management through composting plays a vital role in managing the biodegradable fraction of municipal solid waste. However, the existing composting process has many challenges, such as the lack of optimum microenvironment and microbiome knowledge, which limits efficient outcomes. Therefore, the present study aims to bridge the gap by applying metagenomics to study microbial community dynamicity during different stages of composting. The bacterial community analysis showed that genus Marionobacter (9.4%) and Halomonas (7.4%) were prevalent during the mesophilic stage, whereas the Bacillus (12.2%) and Cellulomonas (0.1%) were prevalent during the thermophilic and maturation stage of composting. The functional profiling of metagenome indicated the abundance of genes involved in degradation of polymeric compounds such as carbohydrates, lipids, and proteins. The relative abundance of arginine and proline metabolisms increased during the thermophilic stage. Whereas the relative abundance of genes involved in fatty acid, tryptophan, galactose, and propanoate metabolisms declined. Similarly, the CAZyme tool predicted that the genes encoding for glycoside hydrolase (GH) families were higher during the mesophilic and thermophilic stages of composting. These enzymes play an important role in degradation of complex polysaccharides such as cellulose and hemicellulose. The data obtained from the present study could be utilized for the optimization and improving the composting process.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of NEURL3 Suppresses Osteoclast Differentiation via BMP7 Ubiquitination Modulation.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-17 DOI: 10.1007/s12010-025-05198-0
Hao Cheng, Huilan Chen, Xin Yan, Qizhe Zhang
{"title":"Inhibition of NEURL3 Suppresses Osteoclast Differentiation via BMP7 Ubiquitination Modulation.","authors":"Hao Cheng, Huilan Chen, Xin Yan, Qizhe Zhang","doi":"10.1007/s12010-025-05198-0","DOIUrl":"https://doi.org/10.1007/s12010-025-05198-0","url":null,"abstract":"<p><p>Osteoporosis (OP) is a genetic disorder characterized by an imbalance between osteoblast-mediated bone formation and osteoclast-induced bone resorption. However, the underlying gene-related mechanisms of its pathogenesis remain to be fully elucidated. Aberrantly expressed neuralized E3 ubiquitin-protein ligase 3 (NEURL3), which is related to osteoclastic differentiation, was identified through the analysis of the microarray profile GSE176265. Bone marrow-derived macrophages (BMMs) were isolated from the femurs and tibias of C57BL/6 J mice and treated with 30 ng/mL macrophage-colony-stimulating factor (M-CSF) and 100 ng/mL receptor activator of nuclear factor-kappa B ligand (RANKL) to induce osteoclastic differentiation, thereby mimicking OP in vitro. To model OP in vivo, ovariectomy (OVX)-induced bone loss was performed in mice. High expression levels of NEURL3 were confirmed in clinical samples, OP model cells, and OP model mice using quantitative real-time polymerase chain reaction (qRT-PCR). The impact of NEURL3 on osteoclastic differentiation was assessed by evaluating cell viability and the expression levels of osteoclastogenesis-related marker genes. Additionally, bone loss in mice was quantified using micro-computed tomography before and after NEURL3 inhibition. Mechanistically, the effects of NEURL3 on osteogenic differentiation were investigated by determining the protein levels of osteogenic markers via Western blotting. NEURL3 was markedly overexpressed in serum samples collected from patients with OP, OVX-induced OP mouse models, and induced osteoclasts. Inhibition of NEURL3 leads to a 20% decrease in BMM survival rate and a reduction in the number of tartrate-resistant acid phosphatase (TRAP) positive cells, which is a characteristic of mature osteoclasts. Furthermore, the expression levels of osteoclastogenesis-related marker genes were reduced by 50%. In vivo studies revealed that suppressing NEURL3 resulted in a 38% improvement in trabecular bone volume (BV/TV) and a 28% increase in bone mineral density (BMD) in the OVX-induced OP mice. Mechanistically, NEURL3 promoted osteoclast differentiation by increasing the ubiquitination levels of BMP7. Inhibition of BMP7 reversed the effects of NEURL3 on osteoclast differentiation in BMMs. Suppression of NEURL3 inhibits osteoclast differentiation of BMMs in vitro and alleviates bone loss in vivo. The underlying mechanism may involve NEURL3-induced ubiquitination of BMP7. Collectively, the downregulation of NEURL3 represents a promising therapeutic strategy for suppressing osteoclast differentiation and treating OP.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the Secondary Metabolite Biosynthesis Networks in Underutilized Tree Bean (Parkia timoriana) Through Integrated Metabolomic and Transcriptomic Approaches.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-17 DOI: 10.1007/s12010-025-05199-z
Shafquat Fakhrah, Nasreen Bano, Kunwar Sarvendra, Rayees Ahmad Lone, Sagar Prasad Nayak, Alka Kumari, Prasant Kumar Rout, Chandra Sekhar Mohanty
{"title":"Elucidating the Secondary Metabolite Biosynthesis Networks in Underutilized Tree Bean (Parkia timoriana) Through Integrated Metabolomic and Transcriptomic Approaches.","authors":"Shafquat Fakhrah, Nasreen Bano, Kunwar Sarvendra, Rayees Ahmad Lone, Sagar Prasad Nayak, Alka Kumari, Prasant Kumar Rout, Chandra Sekhar Mohanty","doi":"10.1007/s12010-025-05199-z","DOIUrl":"https://doi.org/10.1007/s12010-025-05199-z","url":null,"abstract":"<p><p>The tree bean (Parkia timoriana (DC). Merr) is an underutilized legume and is abundantly found in Southeast Asia. It is valued for its nutritious pods and cultivated for food and timber. Despite of the presence of several nutrients, the regulatory networks involved in secondary metabolite biosynthesis in the tree bean remain largely unexplored. Recent studies have highlighted that consumption of its pods provides numerous health benefits, including antioxidant, α-glucosidase inhibitory, antibacterial, antidiabetic, and insecticidal activities. To elucidate the biosynthesis of specific metabolites in this plant, a comparative metabolite and transcriptomic analysis of the leaf and root tissues of P. timoriana was carried out. The study revealed that P. timoriana leaf and root tissues contain varying levels of phenolics, flavonoids, and terpenoids. <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR) analysis identified 16 significant metabolites in the leaf and root tissues, including sugars, amino acids, and organic acids. L-dihydroxyphenylalanine (L-DOPA), an amino acid derivative and precursor to dopamine, was detected for the first time in the seeds. Additionally, the presence of pinitol in P. timoriana was also confirmed. De novo RNA-sequence analysis identified differentially expressed genes (DEGs) in both the tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified pathways associated with shikimate pathway, such as phenylpropanoid and flavonoid biosynthesis. MapMan pathway analysis revealed a high number of transcripts related to phenylalanine, tryptophan, tyrosine, and condensed tannin biosynthesis. The research conducted identified secondary metabolites in P. timoriana, and their probable biosynthetic pathway which can be used for medicinal and nutritional purposes.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laccase-Catalyzed Oligomerization of Esculin: Effect of Key Reaction Parameters and Evaluation of Oligoesculin Antioxidant and Skin Prebiotic Capacity.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-17 DOI: 10.1007/s12010-025-05202-7
Ana Vukoičić, Ana Milivojević, Zoja Zlatković, Katarina Banjanac, Milica Simović, Ljiljana Tolić Stojadinović, Svetlana Grujić, Ljubodrag Vujisić, Vele Tešević, Dejan Bezbradica
{"title":"Laccase-Catalyzed Oligomerization of Esculin: Effect of Key Reaction Parameters and Evaluation of Oligoesculin Antioxidant and Skin Prebiotic Capacity.","authors":"Ana Vukoičić, Ana Milivojević, Zoja Zlatković, Katarina Banjanac, Milica Simović, Ljiljana Tolić Stojadinović, Svetlana Grujić, Ljubodrag Vujisić, Vele Tešević, Dejan Bezbradica","doi":"10.1007/s12010-025-05202-7","DOIUrl":"https://doi.org/10.1007/s12010-025-05202-7","url":null,"abstract":"<p><p>Enzymatic oligomerization of flavonoids enables the synthesis of biomolecules with different structures and improved physicochemical and biological properties and can therefore broaden their application in industry. In this study, the influence of the key reaction parameters temperature, solvent, substrate, and enzyme concentrations on the synthesis of esculin oligomers was investigated. The reaction was optimized using response surface methodology (RSM) in order to obtain the highest products' concentration and specific products' yield (per mass of enzyme). Mass spectrometry revealed that oligomers with a degree of polymerization of up to 4 were synthesized in which dimers were the most abundant, while the NMR analysis of the esculin dimer product showed that C8-C8 link between two esculin units was formed. Maximum products' concentration was obtained at 60 °C, in 14% (v/v) methanol, 7 mg/mL of esculin, and 54.6 U/L of laccase after 7 h, while the optimal conditions for specific products' yield differed in the aspect of optimal laccase concentration which was 19 U/L for this output. Synthesized esculin oligomers exhibited higher iron chelating and cupric reducing antioxidant capacities and similar or even superior free radical scavenging activity compared to monomeric esculin. Moreover, the mixture of synthesized esculin oligomers has shown a promising potential to be used as a skin prebiotics, suggesting novel applications in skincare industries.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First Evidence of Microplastics Burden in Surface Waters of Budhabalanga Estuary, Chandipur, Eastern India: Potential Threat to Aquatic Ecosystem.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-15 DOI: 10.1007/s12010-025-05189-1
Susri Nayak, Pratyusha Nayak, Siba Soren, Subhashree Nayak, Smruti Prajna Pradhan, Sthitaprajna Nath Sharma, Nishigandha Muduli, Shubhajit Saha, Surya Narayan Dash, Lipika Patnaik
{"title":"First Evidence of Microplastics Burden in Surface Waters of Budhabalanga Estuary, Chandipur, Eastern India: Potential Threat to Aquatic Ecosystem.","authors":"Susri Nayak, Pratyusha Nayak, Siba Soren, Subhashree Nayak, Smruti Prajna Pradhan, Sthitaprajna Nath Sharma, Nishigandha Muduli, Shubhajit Saha, Surya Narayan Dash, Lipika Patnaik","doi":"10.1007/s12010-025-05189-1","DOIUrl":"https://doi.org/10.1007/s12010-025-05189-1","url":null,"abstract":"<p><p>Microplastic pollution has emerged as a new global concern because of its ubiquitous and persistent nature. Due to the rising use of plastics and discharge of plastic waste into coastal water bodies from point and non-point sources, the occurrence of microplastics along coastal ecosystems has become very prevalent. The current study is the first of its kind to evaluate the presence of microplastics in the surface water of river estuary along the coast of Odisha. Six GPS-fixed locations were used to collect the surface water samples from the Budhabalanga river estuary in Chandipur, Odisha, India. The samples were then subjected to further investigation to determine the types of microplastics present. The average microplastic abundance, according to our findings, ranged from 9.33 ± 2.11 items L<sup>-1</sup> to 28.50 ± 2.77 items L<sup>-1</sup>. Microplastics come in a variety of colours and shapes, but the most prevalent kind is fibre-shaped and black in colour. The pollution load index of the sampling area was calculated to be 4.25 which is categorized under ecological risk level I. FE-SEM images clearly showed the topology of microplastics and ATR-FTIR analysis confirmed the presence of polyethylene, polypropylene, polyvinyl chloride (PVC), nylon, polycarbonate (PC), ethylene vinyl acetate (EVA) and polystyrene (PS) at sampling stations. Our investigation provides useful information that helps to reduce the ecological risk in habitats connected with contaminated sites, including both aquatic and terrestrial habitats.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topical Application of Cocktail dsRNA Induces Plant Resistance Against Bean Common Mosaic Virus (BCMV).
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-14 DOI: 10.1007/s12010-025-05187-3
Farhana Wani, Shahjahan Rashid, Sahar Saleem, Gowhar Ali, Fayaz A Mohiddin, Aflaq Hamid
{"title":"Topical Application of Cocktail dsRNA Induces Plant Resistance Against Bean Common Mosaic Virus (BCMV).","authors":"Farhana Wani, Shahjahan Rashid, Sahar Saleem, Gowhar Ali, Fayaz A Mohiddin, Aflaq Hamid","doi":"10.1007/s12010-025-05187-3","DOIUrl":"https://doi.org/10.1007/s12010-025-05187-3","url":null,"abstract":"<p><p>Bean common mosaic virus (BCMV) is a severe plant pathogen of common bean (Phaseolus vulgaris L.), that causes huge yield losses across the globe. The virus has a wide host range and varied modes of transmission, due to which its management is challenging. Pathogen-derived resistance, which entails inserting virus-derived gene sequences into transgenic plants, is extremely effective in overcoming plant viruses. However, owing to ethical and biosecurity concerns, transgenic crops have not been widely accepted. Exogenous application of double-stranded RNA (dsRNA) is a new and intriguing method for inducing resistance against plant viruses. In this study, the efficacy of exogenous application of dsRNAs synthesized from BCMV helper component proteinase (HC-Pro) and coat protein (CP) genes were assessed in three plants: tobacco (Nicotiana tabacum), common bean (Phaseolus vulgaris L.), and cowpea (Vigna unguiculata), and both dsRNAs elicited a resistance response. dsRNA targeting the HC-Pro gene of BCMV was found more effective in inducing RNAi-based resistance than dsRNA targeting the CP gene of BCMV with a more pronounced effect in cowpea than tobacco and common bean. We showed the stability and transport of both dsHC-Pro and dsCP in inoculated to non-inoculated young leaves. We also showed the ability of mesoporous silica nanoparticles (MSP) conjugated with dsHC-Pro to provide prolonged stability and broader resistance against BCMV in common bean, extending protection from 12 dpi up to 20 dpi, compared to naked dsHC-Pro. Our results suggest that dsRNA produced from HC-Pro and CP genes of BCMV can induce RNAi-based resistance against BCMV infection.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Phytochemical Profile, Antioxidant, and Anticancer Activity Against Colon Cancer-HT-29: A Potent Therapeutic Medicinal Plant (Tarenna alpestris) in Megamalai Hills, Western Ghats, India.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-13 DOI: 10.1007/s12010-025-05193-5
Chinnappan Sagayaraj, Kumar Bharath Kumar, Sugumar Vimal, Uthaman Danya
{"title":"Assessment of Phytochemical Profile, Antioxidant, and Anticancer Activity Against Colon Cancer-HT-29: A Potent Therapeutic Medicinal Plant (Tarenna alpestris) in Megamalai Hills, Western Ghats, India.","authors":"Chinnappan Sagayaraj, Kumar Bharath Kumar, Sugumar Vimal, Uthaman Danya","doi":"10.1007/s12010-025-05193-5","DOIUrl":"https://doi.org/10.1007/s12010-025-05193-5","url":null,"abstract":"<p><p>Medicinal plants have long been recognized as a valuable source of human health due to their therapeutic potential in treating a variety of diseases. Tarenna alpestris, a plant native to the Megamalai Hills in the Western Ghats of India, has traditionally been used for numerous medicinal purposes. However, despite its extensive use in folklore, scientific validation of its therapeutic properties remains limited. This study aims to evaluate the phytochemical composition of Tarenna alpestris, assess its antioxidant properties, and explore its potential anticancer effects against HT-29 colon cancer cells. The phytochemical profile was determined using preliminary screening and gas chromatography-mass spectrometry (GC-MS). Antioxidant activity was measured through DPPH, FRAP, H₂O₂, and N₂O₂ assays. The anticancer effects were investigated using the MTT assay for cell viability, AO/EtBr staining for apoptosis detection, DAPI staining for nuclear fragmentation analysis, and flow cytometry for cell cycle analysis. The phytochemical analysis identified several bioactive compounds, including flavonoids, alkaloids, terpenoids, and phenolic acids. Sixteen phytocomponents were detected from the extract by GCMS analysis, the major compounds are 9-octadecynoic acid (21%), N-hexadecanoic acid (16%), methylene diamine, N,N'-diacetyl (15%), 1-allyl-cyclohexane-1,2-diol (11%) 2-methyl-6-methylene-octa-1,7-dien-3-ol (5%), squalene (4%), and lupeol (3%) respectively. The antioxidant assays demonstrated significant free radical scavenging activity, with IC50 values comparable to known antioxidant standards. The antioxidant enzymatic activity of Tarenna alpestris extract suggests a potent ability to neutralize reactive oxygen species and protect against oxidative damage. In vitro studies revealed that Tarenna alpestris extract significantly inhibited the proliferation of HT-29 colon cancer cells and induced apoptosis, based on concentration dependent manner. The concentration needed to inhibit 50% of cell growth, known as the IC<sub>50</sub> value, was found to be 26 ± 0.20 μg/mL. Additionally, cell cycle analysis showed G0/G1 phase arrest in treated cells. Tarenna alpestris exhibits a robust phytochemical profile with substantial antioxidant and anticancer properties. These findings support its potential as a therapeutic agent for cancer prevention and treatment. Further research, including in vivo studies, is warranted to fully elucidate its therapeutic efficacy and mechanisms of action.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting Biotic Stress Resistance in Solanum melongena L.: The Role of Exogenous Chlorogenic Acid in Enhancing Secondary Metabolite Production.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-02-13 DOI: 10.1007/s12010-025-05194-4
Pratik Talukder, Sounak Chanda, Baishakhi Sinha
{"title":"Boosting Biotic Stress Resistance in Solanum melongena L.: The Role of Exogenous Chlorogenic Acid in Enhancing Secondary Metabolite Production.","authors":"Pratik Talukder, Sounak Chanda, Baishakhi Sinha","doi":"10.1007/s12010-025-05194-4","DOIUrl":"https://doi.org/10.1007/s12010-025-05194-4","url":null,"abstract":"<p><strong>Background: </strong>Solanum melongena Linnaeus (brinjal) belongs to the Solanaceae family and is also known as eggplant. It is one of the most common vegetables that is grown abundantly and consumed by a large number of people. However, it is found to be highly susceptible to harmful pests such as brinjal shoot and fruit borer, (Leucinodes orbonalis) which are responsible for causing severe damage to the plant's health and, correspondingly, its yield. Damages include shoot and leaf spoilage which leads to overall hampering of the metabolic process of the plant. This study aims to suggest that the plant, Solanum melongena L., has certain self-induced mechanisms to withstand these stress and pest attacks by secreting compounds known as \"Chlorogenic Acid.\" Chlorogenic acid is known to be a plant-derived product and is a part of secondary metabolites. Different plant parts were examined for their diverse secondary metabolite content under laboratory conditions. The study was further proceeded by implementing chlorogenic acid exogenously, on the pest-infected plants at a concentration of 1 mg/ml in two different foliar sprays, one consisting of simple water and another 50% ethanol. Moreover, molecular analysis shows a higher expression of the genes which are pivotal for the secretion of chlorogenic acid within the plant itself. The results of this research reveal that chlorogenic acid exhibits a massive potential in controlling pest attacks against Solanum melongena L. and can be used as a potential bio-pesticide.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信