Yi Zhu;Huiqing Wen;Yong Yang;Caifeng Wen;Jianliang Mao;Pan Wang;Yihua Hu;Cristian Garcia;Jose Rodriguez
{"title":"Novel Virtual Impedance Compensation Algorithm for Operation Stabilization of 3P4L3L PV-BES Microgrids With Constant Power Loads","authors":"Yi Zhu;Huiqing Wen;Yong Yang;Caifeng Wen;Jianliang Mao;Pan Wang;Yihua Hu;Cristian Garcia;Jose Rodriguez","doi":"10.1109/TSTE.2025.3529987","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3529987","url":null,"abstract":"A hybrid microgrid system that includes photovoltaic (PV) panels, battery energy storages (BESs), and constant power loads (CPLs) is presented in this article, where three-phase four-leg three-level (3P4L3L) is utilized as the main power interface. As the penetration of CPLs increases significantly, the operational stability of PV-BES Microgrids has become one of the most challenging issues. To tackle this issue, this paper proposes virtual impedance compensation methods to prevent the instability and oscillations caused by CPLs. First, the small-signal model of main power interfaces, especially 3P4L3L converters and CPLs, is built. Then, the stability of the cascaded system is investigated using the Nyquist criterion. Two compensation strategies are proposed based on the derived small-signal model, and the two methods are analyzed and compared in terms of the stability margin. Experiments are performed to prove the feasibility of the proposed strategy, and the results show that the virtual impedance compensation can prevent instability in 3P4L3L PV-BES Microgrids with high penetration of CPLs.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1401-1413"},"PeriodicalIF":8.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Robust Energy Storage Planning Method for Grids With Wind Power Integration Considering the Impact of Hurricanes","authors":"Huaizhi Yang;Cong Zhang;Jiayong Li;Lipeng Zhu;Ke Zhou","doi":"10.1109/TSTE.2025.3527448","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3527448","url":null,"abstract":"This paper proposes a novel energy storage system (ESS) planning method for improving ESS emergency capability during hurricanes, as well as enhancing the integration of renewable power generation under normal weather simultaneously. First, a novel robust ESS planning (NREP) model is proposed that considers the uncertainties of wind power and transmission line faults, along with their correlation during hurricanes, thereby reducing load shedding losses and wind curtailment. Secondly, to improve both the modeling accuracy of line fault uncertainties and the solution efficiency, a spatio-temporal uncertainty set related to hurricane intensity is constructed through information fusion. Furthermore, an improved column-and-constraint generation (ICCG) algorithm, incorporating nonanticipativity constraints, is proposed to solve the NREP model. The ICCG is able to interrelate scenarios and identify generation-dependent worst-case scenarios, thereby improving the feasibility of multi-period generation decisions under nonanticipative uncertainty realization while reducing losses from wind curtailment and load shedding across all scenarios. Simulation results, obtained by comparisons to previous models and algorithms, validate the effectiveness and superiority of the proposed method.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1388-1400"},"PeriodicalIF":8.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Scheduling and Commercial Testbed-Based Verification of Integrated PV-ESS Systems Considering Settlement Rules in South Korea","authors":"Rae-Kyun Kim;Gyu-Sub Lee;Jae-Gyun Park;Hyoseop Lee;Seung-Il Moon;Jae-Won Chang","doi":"10.1109/TSTE.2025.3529693","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3529693","url":null,"abstract":"This article proposes an optimal scheduling algorithm for an integrated PV-ESS system to maximize the overall revenue from both system marginal price (SMP) and renewable energy certificate (REC), considering detailed settlement rules in South Korea. Furthermore, to prevent revenue losses caused by forecasting errors, robust optimization (RO) and receding horizon rescheduling (RHR) approaches, are exploited. The academic contributions of this work are: 1) the formulation of complex settlement rules as an optimization problem, and 2) the implementation of a mixed integer linear programming (MILP)-based RO that can be solved by non-commercial solvers. To verify the effectiveness of the proposed method, simulations and experiments were conducted using a commercial testbed. Compared to the rule-based algorithm which had been adopted in the testbed, the proposed algorithm achieved a 9.3% increase in revenue.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1372-1387"},"PeriodicalIF":8.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Secondary Frequency Regulation From Aggregated Distributed Photovoltaics: A Dynamic Flexibility Aggregation Approach","authors":"Songyan Zhang;Peixuan Wu;Chao Lu;Huanhuan Yang;Tuo Jiang","doi":"10.1109/TSTE.2025.3529512","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3529512","url":null,"abstract":"To fully utilize the potential of massive small-scale distributed photovoltaics (DPVs) for secondary frequency regulation (SFR), this article introduces a hierarchical coordination framework that incorporates the dynamic response characteristic (DRC) of DPV to automatic generation control (AGC) signals, thereby reflecting the dynamic flexibility of the aggregated DPVs (ADPVs). First, a reserved power feasible range is derived for scheduling the power reserve control (PRC) scheme considering the uncertainty in PV generation and the de-loaded margin base constraint. Second, a two-stage multi-cluster DRC aggregation method that considers the impact of the PRC scheme is developed to describe the equivalent DRC of the ADPVs. Last, the article constructs an integrated cost function (ICF) that reveals the interdependencies between SFR capacity, equivalent DRC and regulation cost, which enables the decoupled scheduling of the SFR indices and the PRC scheme. An event-triggered duty factor reassignment mechanism is further proposed to improve the reliability of SFR service deployment in case of unexpected events. Simulation results indicate that the framework is an efficient approach for quantifying, trading and realizing the dynamic flexibility of the ADPVs.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1356-1371"},"PeriodicalIF":8.6,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frequency Constrained Dispatch With Energy Reserve and Virtual Inertia From Wind Turbines","authors":"Boyou Jiang;Chuangxin Guo;Zhe Chen","doi":"10.1109/TSTE.2025.3528948","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3528948","url":null,"abstract":"With the increasing penetration of wind power and gradual retirement of conventional generating units (CGUs), wind turbines (WTs) become promising resources to provide steady-state energy reserve (ER) and frequency support for the grid to facilitate supply-demand balance and frequency security. In this regard, a novel frequency constrained dispatch framework with ER and virtual inertia from WTs is proposed. Firstly, this paper establishes the WT model with both ER and virtual inertia, whose energy sources are WT's deloading and rotor kinetic energy, respectively. Secondly, the system frequency response and CGUs' power response are derived while considering WTs exiting inertia response at frequency nadir. Then, this paper develops a stochastic-optimization-based frequency constrained dispatch model, where both WTs' frequency regulation parameters and rotor speeds are decision variables, so that the coupling between WT's mechanical and electrical parts and the coupling between system's transient dynamics and steady-state operation can be fully reflected. Finally, convex hull relaxation, convex hull approximation and deep neural networks are used to transform the original nonlinear model into a mixed-integer second-order cone programming model. Case studies on the 118-bus system verify the effectiveness of the proposed models and methods.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1340-1355"},"PeriodicalIF":8.6,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Event-Triggered H-Infinity Pitch Control for Floating Offshore Wind Turbines","authors":"Ya Zhao;Xiyun Yang;Yanfeng Zhang;Qiliang Zhang","doi":"10.1109/TSTE.2025.3525478","DOIUrl":"https://doi.org/10.1109/TSTE.2025.3525478","url":null,"abstract":"The complex wind and wave environment can lead to increased external disturbances and power fluctuations of floating offshore wind turbines, posing a significant challenge to their stable operation. To cope with this issue, this paper formulates an event-triggered H-infinity pitch control strategy for floating offshore wind turbines. Firstly, a linear parameter varying model of floating offshore wind turbines is proposed, utilizing the dynamic characteristics of subsystems while considering the combined external disturbances from wind and wave. Then, the event-triggered control strategy is introduced into the H-infinity pitch control of floating offshore wind turbines. Based on this, a criterion for the asymptotic stability and H-infinity norm boundedness of floating offshore wind turbines is derived. Furthermore, an algorithm is presented for designing feedback gain matrices of the event-triggered H-infinity pitch control, which can effectively reduce the update frequency of the controller. Finally, a simulation is conducted on the IEA 15 MW Reference Wind Turbine by integrating OpenFAST with MATLAB/Simulink. The simulation results provide a comparative analysis of the event-triggered H-infinity pitch control strategy and the continuous-time pitch control strategy, demonstrating the superiority of the method proposed in this paper.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1329-1339"},"PeriodicalIF":8.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongning Zhao;Shiji Pan;Yanxu Chen;Haohan Liao;Yingying Zheng;Lin Ye
{"title":"Intraday Wind Power Forecasting by Ensemble of Overlapping Historical Numerical Weather Predictions","authors":"Yongning Zhao;Shiji Pan;Yanxu Chen;Haohan Liao;Yingying Zheng;Lin Ye","doi":"10.1109/TSTE.2024.3521384","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3521384","url":null,"abstract":"The numerical weather prediction (NWP) is crucial to improve intraday wind power forecasting (WPF) accuracy. However, conventional WPF methods relied solely on a latest reported single NWP, overlooking hidden information from sequentially reported multiple historical NWPs that are partially overlapped over time. Additionally, it's challenging to tackle intraday WPF as it involves both ultra-short-term and short-term horizons with different characteristics. Therefore, a novel spatio-temporal representation learning network is proposed for intraday WPF by ensemble of overlapping historical NWPs. Initially, an integrated mask-reconstruction representation learning pretraining strategy is employed to extract hidden representations of historical wind power measurements and overlapping historical NWPs, providing contextual information for the subsequent intraday WPF task. Then, the output layer is trained and end-to-end fine-tuning of the entire network is conducted to adapt to the specific forecasting task. Moreover, a multi-task learning strategy based on hard parameter sharing is adopted to ensure balanced predictive accuracy across each of forecasted wind farms. Case study and detailed ablation tests based on 5 real-world wind farms demonstrate that the proposed method enhances the forecasting accuracy of most wind farms by leveraging spatio-temporal correlation, achieving the best average performance across all time horizons compared to the baseline models.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1315-1328"},"PeriodicalIF":8.6,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Design for Switchable Grid-Following and Grid-Forming Control","authors":"Huazhao Ding;Rabi Kar;Zhixin Miao;Lingling Fan","doi":"10.1109/TSTE.2024.3520989","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3520989","url":null,"abstract":"This paper presents the design of a novel grid-forming (GFM) control structure adapted from a typical grid-following (GFL) control structure with minimal edits, thereby enabling a switchable control structure for voltage sourced converters (VSCs) to operate in either GFL or GFM mode by simply switching a flag manually. The VSC is shown to be able to operate in the GFL control mode synchronizing to the main grid through a phase-locked-loop (PLL) and operate as a GFM controller with power-based synchronization for both grid-connected and islanded conditions. To guarantee smooth operation, the control schemes and the mode switching logic have been carefully designed and examined via a series of experiments. The experiment results show that the switchable control structure can fulfill the desired control and operation functions and enable smooth transition between control modes.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1301-1314"},"PeriodicalIF":8.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Current Reference Transformation-Based Positive and Negative Sequence Rotor Current Control Method of DFIGs","authors":"Xuesong Gao;Shiyao Qin;Xianzhuo Sun;Zhihao Wang;Rongde Cui;Shuai Xu;Lei Ding","doi":"10.1109/TSTE.2024.3520182","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3520182","url":null,"abstract":"The existing rotor current control methods, despite achieving simultaneous control on the positive and negative sequence rotor currents for the doubly-fed induction generator (DFIG)-based wind turbine, are still facing challenges. Specifically, some works introduce the sequence current decomposition into the classical control structure, which can deteriorate the dynamic performance. While others with high-order regulator embedded into the classical control structure can increase the risk of instability. To this end, this paper proposes a novel current reference transformation-based positive and negative sequence rotor current control method. Firstly, the negative sequence response of the DFIG under the classical single dq-PI rotor current control method is studied, pointing out its satisfactory dynamic performance but poor steady-state performance. Based on which, a transformation formula for the negative sequence rotor current reference is analytically derived to compensate for the steady-state performance. The corresponding analysis indicates that negative sequence rotor current static errors from parameter deviations can be well limited. Comparative simulations illustrated an improved dynamic performance and stability of the DFIG rotor current control with the proposed method. The experimental test of a prototype DFIG system has also been conducted to verify the feasibility of the proposed method in practical implementation.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1283-1300"},"PeriodicalIF":8.6,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TSTE.2024.3508513","DOIUrl":"https://doi.org/10.1109/TSTE.2024.3508513","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"730-730"},"PeriodicalIF":8.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10805486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}