可切换式追栅和成栅控制的新颖设计

IF 10 1区 工程技术 Q1 ENERGY & FUELS
Huazhao Ding;Rabi Kar;Zhixin Miao;Lingling Fan
{"title":"可切换式追栅和成栅控制的新颖设计","authors":"Huazhao Ding;Rabi Kar;Zhixin Miao;Lingling Fan","doi":"10.1109/TSTE.2024.3520989","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a novel grid-forming (GFM) control structure adapted from a typical grid-following (GFL) control structure with minimal edits, thereby enabling a switchable control structure for voltage sourced converters (VSCs) to operate in either GFL or GFM mode by simply switching a flag manually. The VSC is shown to be able to operate in the GFL control mode synchronizing to the main grid through a phase-locked-loop (PLL) and operate as a GFM controller with power-based synchronization for both grid-connected and islanded conditions. To guarantee smooth operation, the control schemes and the mode switching logic have been carefully designed and examined via a series of experiments. The experiment results show that the switchable control structure can fulfill the desired control and operation functions and enable smooth transition between control modes.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1301-1314"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Design for Switchable Grid-Following and Grid-Forming Control\",\"authors\":\"Huazhao Ding;Rabi Kar;Zhixin Miao;Lingling Fan\",\"doi\":\"10.1109/TSTE.2024.3520989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a novel grid-forming (GFM) control structure adapted from a typical grid-following (GFL) control structure with minimal edits, thereby enabling a switchable control structure for voltage sourced converters (VSCs) to operate in either GFL or GFM mode by simply switching a flag manually. The VSC is shown to be able to operate in the GFL control mode synchronizing to the main grid through a phase-locked-loop (PLL) and operate as a GFM controller with power-based synchronization for both grid-connected and islanded conditions. To guarantee smooth operation, the control schemes and the mode switching logic have been carefully designed and examined via a series of experiments. The experiment results show that the switchable control structure can fulfill the desired control and operation functions and enable smooth transition between control modes.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 2\",\"pages\":\"1301-1314\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10811873/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10811873/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型的电网形成(GFM)控制结构的设计,该结构采用了典型的电网跟随(GFL)控制结构,并进行了最小的编辑,从而使电压源变换器(vsc)的可切换控制结构通过简单的手动切换标志来在GFL或GFM模式下运行。VSC被证明能够在GFL控制模式下运行,通过锁相环(PLL)与主电网同步,并在并网和孤岛条件下作为GFM控制器运行,具有基于功率的同步。为了保证系统的平稳运行,我们精心设计了控制方案和模式切换逻辑,并通过一系列实验对其进行了验证。实验结果表明,该可切换控制结构能够满足预期的控制和操作功能,并能实现控制模式之间的平稳过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Design for Switchable Grid-Following and Grid-Forming Control
This paper presents the design of a novel grid-forming (GFM) control structure adapted from a typical grid-following (GFL) control structure with minimal edits, thereby enabling a switchable control structure for voltage sourced converters (VSCs) to operate in either GFL or GFM mode by simply switching a flag manually. The VSC is shown to be able to operate in the GFL control mode synchronizing to the main grid through a phase-locked-loop (PLL) and operate as a GFM controller with power-based synchronization for both grid-connected and islanded conditions. To guarantee smooth operation, the control schemes and the mode switching logic have been carefully designed and examined via a series of experiments. The experiment results show that the switchable control structure can fulfill the desired control and operation functions and enable smooth transition between control modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信