A Novel Robust Energy Storage Planning Method for Grids With Wind Power Integration Considering the Impact of Hurricanes

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Huaizhi Yang;Cong Zhang;Jiayong Li;Lipeng Zhu;Ke Zhou
{"title":"A Novel Robust Energy Storage Planning Method for Grids With Wind Power Integration Considering the Impact of Hurricanes","authors":"Huaizhi Yang;Cong Zhang;Jiayong Li;Lipeng Zhu;Ke Zhou","doi":"10.1109/TSTE.2025.3527448","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel energy storage system (ESS) planning method for improving ESS emergency capability during hurricanes, as well as enhancing the integration of renewable power generation under normal weather simultaneously. First, a novel robust ESS planning (NREP) model is proposed that considers the uncertainties of wind power and transmission line faults, along with their correlation during hurricanes, thereby reducing load shedding losses and wind curtailment. Secondly, to improve both the modeling accuracy of line fault uncertainties and the solution efficiency, a spatio-temporal uncertainty set related to hurricane intensity is constructed through information fusion. Furthermore, an improved column-and-constraint generation (ICCG) algorithm, incorporating nonanticipativity constraints, is proposed to solve the NREP model. The ICCG is able to interrelate scenarios and identify generation-dependent worst-case scenarios, thereby improving the feasibility of multi-period generation decisions under nonanticipative uncertainty realization while reducing losses from wind curtailment and load shedding across all scenarios. Simulation results, obtained by comparisons to previous models and algorithms, validate the effectiveness and superiority of the proposed method.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1388-1400"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10844010/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel energy storage system (ESS) planning method for improving ESS emergency capability during hurricanes, as well as enhancing the integration of renewable power generation under normal weather simultaneously. First, a novel robust ESS planning (NREP) model is proposed that considers the uncertainties of wind power and transmission line faults, along with their correlation during hurricanes, thereby reducing load shedding losses and wind curtailment. Secondly, to improve both the modeling accuracy of line fault uncertainties and the solution efficiency, a spatio-temporal uncertainty set related to hurricane intensity is constructed through information fusion. Furthermore, an improved column-and-constraint generation (ICCG) algorithm, incorporating nonanticipativity constraints, is proposed to solve the NREP model. The ICCG is able to interrelate scenarios and identify generation-dependent worst-case scenarios, thereby improving the feasibility of multi-period generation decisions under nonanticipative uncertainty realization while reducing losses from wind curtailment and load shedding across all scenarios. Simulation results, obtained by comparisons to previous models and algorithms, validate the effectiveness and superiority of the proposed method.
本文提出了一种新型储能系统(ESS)规划方法,以提高飓风期间的储能系统应急能力,并同时加强正常天气下的可再生能源发电整合。首先,本文提出了一种新型鲁棒储能系统规划(NREP)模型,该模型考虑了飓风期间风电和输电线路故障的不确定性及其相关性,从而减少了甩负荷损失和风电削减。其次,为了提高线路故障不确定性的建模精度和求解效率,通过信息融合构建了与飓风强度相关的时空不确定性集。此外,还提出了一种包含非预期性约束的改进列与约束生成算法(ICCG)来求解 NREP 模型。ICCG 能够将各种情景相互关联,并识别依赖发电量的最坏情景,从而提高在非预期不确定性实现条件下多期发电决策的可行性,同时减少所有情景下因风力削减和甩负荷造成的损失。通过与以前的模型和算法进行比较而获得的仿真结果验证了所提方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信