Event-Triggered H-Infinity Pitch Control for Floating Offshore Wind Turbines

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Ya Zhao;Xiyun Yang;Yanfeng Zhang;Qiliang Zhang
{"title":"Event-Triggered H-Infinity Pitch Control for Floating Offshore Wind Turbines","authors":"Ya Zhao;Xiyun Yang;Yanfeng Zhang;Qiliang Zhang","doi":"10.1109/TSTE.2025.3525478","DOIUrl":null,"url":null,"abstract":"The complex wind and wave environment can lead to increased external disturbances and power fluctuations of floating offshore wind turbines, posing a significant challenge to their stable operation. To cope with this issue, this paper formulates an event-triggered H-infinity pitch control strategy for floating offshore wind turbines. Firstly, a linear parameter varying model of floating offshore wind turbines is proposed, utilizing the dynamic characteristics of subsystems while considering the combined external disturbances from wind and wave. Then, the event-triggered control strategy is introduced into the H-infinity pitch control of floating offshore wind turbines. Based on this, a criterion for the asymptotic stability and H-infinity norm boundedness of floating offshore wind turbines is derived. Furthermore, an algorithm is presented for designing feedback gain matrices of the event-triggered H-infinity pitch control, which can effectively reduce the update frequency of the controller. Finally, a simulation is conducted on the IEA 15 MW Reference Wind Turbine by integrating OpenFAST with MATLAB/Simulink. The simulation results provide a comparative analysis of the event-triggered H-infinity pitch control strategy and the continuous-time pitch control strategy, demonstrating the superiority of the method proposed in this paper.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1329-1339"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10820839/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The complex wind and wave environment can lead to increased external disturbances and power fluctuations of floating offshore wind turbines, posing a significant challenge to their stable operation. To cope with this issue, this paper formulates an event-triggered H-infinity pitch control strategy for floating offshore wind turbines. Firstly, a linear parameter varying model of floating offshore wind turbines is proposed, utilizing the dynamic characteristics of subsystems while considering the combined external disturbances from wind and wave. Then, the event-triggered control strategy is introduced into the H-infinity pitch control of floating offshore wind turbines. Based on this, a criterion for the asymptotic stability and H-infinity norm boundedness of floating offshore wind turbines is derived. Furthermore, an algorithm is presented for designing feedback gain matrices of the event-triggered H-infinity pitch control, which can effectively reduce the update frequency of the controller. Finally, a simulation is conducted on the IEA 15 MW Reference Wind Turbine by integrating OpenFAST with MATLAB/Simulink. The simulation results provide a comparative analysis of the event-triggered H-infinity pitch control strategy and the continuous-time pitch control strategy, demonstrating the superiority of the method proposed in this paper.
用于漂浮式近海风力涡轮机的事件触发 H-Infinity 变桨控制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信