Secondary Frequency Regulation From Aggregated Distributed Photovoltaics: A Dynamic Flexibility Aggregation Approach

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Songyan Zhang;Peixuan Wu;Chao Lu;Huanhuan Yang;Tuo Jiang
{"title":"Secondary Frequency Regulation From Aggregated Distributed Photovoltaics: A Dynamic Flexibility Aggregation Approach","authors":"Songyan Zhang;Peixuan Wu;Chao Lu;Huanhuan Yang;Tuo Jiang","doi":"10.1109/TSTE.2025.3529512","DOIUrl":null,"url":null,"abstract":"To fully utilize the potential of massive small-scale distributed photovoltaics (DPVs) for secondary frequency regulation (SFR), this article introduces a hierarchical coordination framework that incorporates the dynamic response characteristic (DRC) of DPV to automatic generation control (AGC) signals, thereby reflecting the dynamic flexibility of the aggregated DPVs (ADPVs). First, a reserved power feasible range is derived for scheduling the power reserve control (PRC) scheme considering the uncertainty in PV generation and the de-loaded margin base constraint. Second, a two-stage multi-cluster DRC aggregation method that considers the impact of the PRC scheme is developed to describe the equivalent DRC of the ADPVs. Last, the article constructs an integrated cost function (ICF) that reveals the interdependencies between SFR capacity, equivalent DRC and regulation cost, which enables the decoupled scheduling of the SFR indices and the PRC scheme. An event-triggered duty factor reassignment mechanism is further proposed to improve the reliability of SFR service deployment in case of unexpected events. Simulation results indicate that the framework is an efficient approach for quantifying, trading and realizing the dynamic flexibility of the ADPVs.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1356-1371"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10840304/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To fully utilize the potential of massive small-scale distributed photovoltaics (DPVs) for secondary frequency regulation (SFR), this article introduces a hierarchical coordination framework that incorporates the dynamic response characteristic (DRC) of DPV to automatic generation control (AGC) signals, thereby reflecting the dynamic flexibility of the aggregated DPVs (ADPVs). First, a reserved power feasible range is derived for scheduling the power reserve control (PRC) scheme considering the uncertainty in PV generation and the de-loaded margin base constraint. Second, a two-stage multi-cluster DRC aggregation method that considers the impact of the PRC scheme is developed to describe the equivalent DRC of the ADPVs. Last, the article constructs an integrated cost function (ICF) that reveals the interdependencies between SFR capacity, equivalent DRC and regulation cost, which enables the decoupled scheduling of the SFR indices and the PRC scheme. An event-triggered duty factor reassignment mechanism is further proposed to improve the reliability of SFR service deployment in case of unexpected events. Simulation results indicate that the framework is an efficient approach for quantifying, trading and realizing the dynamic flexibility of the ADPVs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信