{"title":"A Novel Current Reference Transformation-Based Positive and Negative Sequence Rotor Current Control Method of DFIGs","authors":"Xuesong Gao;Shiyao Qin;Xianzhuo Sun;Zhihao Wang;Rongde Cui;Shuai Xu;Lei Ding","doi":"10.1109/TSTE.2024.3520182","DOIUrl":null,"url":null,"abstract":"The existing rotor current control methods, despite achieving simultaneous control on the positive and negative sequence rotor currents for the doubly-fed induction generator (DFIG)-based wind turbine, are still facing challenges. Specifically, some works introduce the sequence current decomposition into the classical control structure, which can deteriorate the dynamic performance. While others with high-order regulator embedded into the classical control structure can increase the risk of instability. To this end, this paper proposes a novel current reference transformation-based positive and negative sequence rotor current control method. Firstly, the negative sequence response of the DFIG under the classical single dq-PI rotor current control method is studied, pointing out its satisfactory dynamic performance but poor steady-state performance. Based on which, a transformation formula for the negative sequence rotor current reference is analytically derived to compensate for the steady-state performance. The corresponding analysis indicates that negative sequence rotor current static errors from parameter deviations can be well limited. Comparative simulations illustrated an improved dynamic performance and stability of the DFIG rotor current control with the proposed method. The experimental test of a prototype DFIG system has also been conducted to verify the feasibility of the proposed method in practical implementation.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 2","pages":"1283-1300"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10807092/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The existing rotor current control methods, despite achieving simultaneous control on the positive and negative sequence rotor currents for the doubly-fed induction generator (DFIG)-based wind turbine, are still facing challenges. Specifically, some works introduce the sequence current decomposition into the classical control structure, which can deteriorate the dynamic performance. While others with high-order regulator embedded into the classical control structure can increase the risk of instability. To this end, this paper proposes a novel current reference transformation-based positive and negative sequence rotor current control method. Firstly, the negative sequence response of the DFIG under the classical single dq-PI rotor current control method is studied, pointing out its satisfactory dynamic performance but poor steady-state performance. Based on which, a transformation formula for the negative sequence rotor current reference is analytically derived to compensate for the steady-state performance. The corresponding analysis indicates that negative sequence rotor current static errors from parameter deviations can be well limited. Comparative simulations illustrated an improved dynamic performance and stability of the DFIG rotor current control with the proposed method. The experimental test of a prototype DFIG system has also been conducted to verify the feasibility of the proposed method in practical implementation.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.