IEEE Transactions on Semiconductor Manufacturing最新文献

筛选
英文 中文
Special Section Call for Papers: Bridging the Data Gap in Photovoltaics with Synthetic Data Generation 特别章节征稿:通过合成数据生成弥补光伏领域的数据差距
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-22 DOI: 10.1109/TSM.2024.3455875
{"title":"Special Section Call for Papers: Bridging the Data Gap in Photovoltaics with Synthetic Data Generation","authors":"","doi":"10.1109/TSM.2024.3455875","DOIUrl":"https://doi.org/10.1109/TSM.2024.3455875","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"645-646"},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10765976","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Papers: Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices 征稿:电气和电子工程师学会电子器件学报》智能传感器系统特刊
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-22 DOI: 10.1109/TSM.2024.3455873
{"title":"Call for Papers: Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices","authors":"","doi":"10.1109/TSM.2024.3455873","DOIUrl":"https://doi.org/10.1109/TSM.2024.3455873","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"643-644"},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Special Section on Sustainability 可持续发展特刊特约编辑
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-22 DOI: 10.1109/TSM.2024.3485049
Oliver D. Patterson;Tomasz Brozek;Kaushik Balamukundhan;David M. Fried;Bill Nehrer;Suresh Ramarajan
{"title":"Guest Editorial Special Section on Sustainability","authors":"Oliver D. Patterson;Tomasz Brozek;Kaushik Balamukundhan;David M. Fried;Bill Nehrer;Suresh Ramarajan","doi":"10.1109/TSM.2024.3485049","DOIUrl":"https://doi.org/10.1109/TSM.2024.3485049","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"418-421"},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Semiconductor Manufacturing Information for Authors IEEE Transactions on Semiconductor Manufacturing 为作者提供的信息
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-22 DOI: 10.1109/TSM.2024.3455877
{"title":"IEEE Transactions on Semiconductor Manufacturing Information for Authors","authors":"","doi":"10.1109/TSM.2024.3455877","DOIUrl":"https://doi.org/10.1109/TSM.2024.3455877","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"C3-C3"},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10765978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-22 DOI: 10.1109/TSM.2024.3487439
{"title":"Blank Page","authors":"","doi":"10.1109/TSM.2024.3487439","DOIUrl":"https://doi.org/10.1109/TSM.2024.3487439","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"C4-C4"},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research With the World! TechRxiv:与世界分享您的预印本研究成果!
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-22 DOI: 10.1109/TSM.2024.3504213
{"title":"TechRxiv: Share Your Preprint Research With the World!","authors":"","doi":"10.1109/TSM.2024.3504213","DOIUrl":"https://doi.org/10.1109/TSM.2024.3504213","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"648-648"},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Semiconductor Manufacturing Publication Information 电气和电子工程师学会半导体制造期刊》出版信息
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-22 DOI: 10.1109/TSM.2024.3455869
{"title":"IEEE Transactions on Semiconductor Manufacturing Publication Information","authors":"","doi":"10.1109/TSM.2024.3455869","DOIUrl":"https://doi.org/10.1109/TSM.2024.3455869","url":null,"abstract":"","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"C2-C2"},"PeriodicalIF":2.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10765977","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prevention of Moisture Invasion by Flow Isolation Device (FID) for Mask Automatic Storage System (Stocker Room) in a Semiconductor Fabrication Plant (Fab) 用流动隔离装置(FID)防止半导体制造厂掩膜自动存储系统(库房)的水分侵入
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-18 DOI: 10.1109/TSM.2024.3492173
Pin-Yen Liao;Tee Lin;Omid Ali Zargar;Jhang-Kun Li;Yang-Cheng Shih;Shih-Cheng Hu;Graham Leggett
{"title":"Prevention of Moisture Invasion by Flow Isolation Device (FID) for Mask Automatic Storage System (Stocker Room) in a Semiconductor Fabrication Plant (Fab)","authors":"Pin-Yen Liao;Tee Lin;Omid Ali Zargar;Jhang-Kun Li;Yang-Cheng Shih;Shih-Cheng Hu;Graham Leggett","doi":"10.1109/TSM.2024.3492173","DOIUrl":"https://doi.org/10.1109/TSM.2024.3492173","url":null,"abstract":"recent developments in semiconductor manufacturing have seen feature sizes reduce to as small as 3 nm. It is predicted that 2 nm, or even 1 nanometer will be achieved soon. Improving the level of cleanliness of the wafer mask during manufacturing can lead to improved product yield and quality. The quality of lithography technology and the reticle is one of the most important items in the wafer manufacturing process. The cleanliness of this process directly affects the wafer quality and yield. Because the wafer manufacturing process involves the stacking of multiple reticles through lithography technology, semiconductor factories mostly use a reticle stocker room to store the photomasks. However, the reticle is susceptible to defects caused by moisture, particles, and molecular contaminants in the air. Therefore, the reticle stocker room environment requires high cleanliness and humidity control. In this study, the flow stream lines, velocity and humidity fields associated with a flow isolation device (FID) installed in a reticle stocker room were analyzed with the assistance of computational fluid dynamics (CFD) software developed by ANSYS Fluent. Different velocity (V=1 m/s, 1.5 m/s, 2 m/s) of the flow isolation device were examined. The results show that under the same velocity (V=1 m/s), the wider the outlet width of the flow isolation device (W <inline-formula> <tex-math>${=}0$ </tex-math></inline-formula>.2 m), the higher the isolation efficiency (<inline-formula> <tex-math>$eta {=}83.9$ </tex-math></inline-formula>%). The results also show that the faster the velocity of the flow isolation device (V =2 m/s), the better the isolation efficiency (<inline-formula> <tex-math>$eta {=}88.2$ </tex-math></inline-formula>%) under the same outlet width (W <inline-formula> <tex-math>${=}0$ </tex-math></inline-formula>.1 m). The use of the flow isolation device can effectively reduce the supply of clean dry air (CDA) by up to 40%, greatly reducing energy consumption during semiconductor manufacturing. According to the results of this study, when using both a hollow fiber adsorption dryer and a flow isolation device with a width of 0.1 m and an outlet wind speed of 2 m/s, it can save 118,514 kWh per year, and its energy saving rate is 92.03%.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 1","pages":"57-64"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Data-Driven Approach for Improving Energy Efficiency in a Semiconductor Manufacturing Plant 提高半导体制造厂能效的数据驱动方法
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-11-05 DOI: 10.1109/TSM.2024.3483781
Zhao Hong;Chew Ze Yong;Kosasih Lucky;Goh Jun Rong;Wang Joheng
{"title":"A Data-Driven Approach for Improving Energy Efficiency in a Semiconductor Manufacturing Plant","authors":"Zhao Hong;Chew Ze Yong;Kosasih Lucky;Goh Jun Rong;Wang Joheng","doi":"10.1109/TSM.2024.3483781","DOIUrl":"https://doi.org/10.1109/TSM.2024.3483781","url":null,"abstract":"The semiconductor industry faces increasing pressure to improve energy efficiency while maintaining competitiveness and sustainability. Apart from more conventional energy efficiency measures look at equipment modernization and process and design optimization, this paper explores the potential of data-driven approaches to address these challenges and optimize energy consumption across both the facility and manufacturing space of a semiconductor manufacture plant. By harnessing advanced analytics, machine learning algorithms, and IoT technologies, semiconductor manufacturers can gain real-time insights into energy usage patterns, and identify areas of opportunities that leads to the implementation of targeted interventions to optimize performance. The paper first looks into the challenges and measures of enabling and enhancing data visibility which is the foundation of the data-driven approach, then it examines case studies, best practices and various systematic approaches, demonstrating the transformative impact of data-driven energy efficiency measures which leads to operational efficiency, cost reduction, and environmental sustainability. Ultimately, this paper aims to provide a fresh angle into the energy efficiency study for peers in semiconductor industries to leverage in their journey towards a more sustainable and energy efficient future.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"475-480"},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742890","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Multimodal Spot Scanning Imaging System for Wafer Defect Inspection 用于晶圆缺陷检测的多模态点扫描成像系统的特性研究
IF 2.3 3区 工程技术
IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-10-15 DOI: 10.1109/TSM.2024.3481291
Zuoda Zhou;Haiyan Luo;Wei Xiong;Dingjun Qu;Ruizhe Ding;Zhiwei Li;Wei Jin;Yu Ru;Shihao Jia;Jin Hong
{"title":"Characterization of Multimodal Spot Scanning Imaging System for Wafer Defect Inspection","authors":"Zuoda Zhou;Haiyan Luo;Wei Xiong;Dingjun Qu;Ruizhe Ding;Zhiwei Li;Wei Jin;Yu Ru;Shihao Jia;Jin Hong","doi":"10.1109/TSM.2024.3481291","DOIUrl":"https://doi.org/10.1109/TSM.2024.3481291","url":null,"abstract":"Typical defects on unpatterned wafers include particles, residues, scratches, and cracks. Various dark-field scattering methods have been applied to detect unpatterned wafer surface defects. However, these methods have only one optical detection channel, making handling multiple types of wafer defects difficult. In response, the theory of multimodal defect inspection is improved, and a multimodal spot-scanning imaging system is developed. The laser beam is focused on the wafer surface, generating micron-level high-intensity focused spot illumination. Scattered light from the wafer surface is collected by the dark-field objective, and the intensity is measured by the photodiode. Reflected light from the wafer surface is collected by the bright-field objective. After polarization splitting, it is measured by two four-quadrant detectors to analyze the topography, film, and reflected signal. The turntable and linear guide drive the optical head and wafer, allowing the focused spot to scan along the wafer in a spiral trajectory, enabling fast and accurate detection. The defect inspection system has been verified through experiments. The minimum detectable PSL particle size is less than 200 nm, the minimum detectable scratch width is less than <inline-formula> <tex-math>$1~mu $ </tex-math></inline-formula>m, and the minimum detectable stain width is less than <inline-formula> <tex-math>$20~mu $ </tex-math></inline-formula>m.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 1","pages":"4-11"},"PeriodicalIF":2.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信