{"title":"Assessment of the Potential for the Formation of a Circular Phosphorus Cycle Using Substance Flow Analysis Based on Reports from Malaysia","authors":"Latifah Abdul Ghani","doi":"10.1177/11786221221089640","DOIUrl":"https://doi.org/10.1177/11786221221089640","url":null,"abstract":"Sustainability of phosphorus (P) requires detailed and serious key management strategies to control the P flow balance across the environmental systems. During the 1970s, the reserve of phosphate in Malaysia was at its highest level, which led to a decline in resources to the continuous demand increased the import trading of these resources from foreign countries. Consequently, the increased import rate led to imbalanced essential nutrient flow that could impact the national security. The depletion of P reserves initiated in the 1970s triggered the Malaysian government to act quickly by comparing the performance of P accounting indicators according to its primary flow in different ministries. However, the capital injections to Small Medium Industry (SMI) and non-SMI players that increased since the mid-2000s returned the imbalanced P loss to normal. This study utilised extant literature for the development of guidelines in identifying ‘hotspots’ in P flow return, with particular emphasis on national P security achievements. Based on the findings, this study successfully documented the current research patterns of P flow in various systems related to the main P problems, evaluated flow chain requirements and possible impacts of P inputs-outputs, apart from developing solutions to guide policymakers in considering the aspects of substance flow analysis (SFA) approaches in establishing the national P modelling. To reduce the P nutrient leaching down to the levels observed in the early 1990s, a fundamental and better understanding of nutrient management practices coupled with minimised uncertainty of the P catchment scale is required. Monitoring the dispersion of P nutrient can prevent environmental degradation. In conclusion, this review provided a potential approach to achieve new management targets by proposing P load reduction strategies which focuses on the current trend of P demand-production for long-term sustainability of non-renewable resources.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41986530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Land Use/Cover Changes and Surface Temperature Dynamics Over Abaminus Watershed, Northwest Ethiopia","authors":"Ermias Debie, Mesfin Anteneh, Tadele Asmare","doi":"10.1177/11786221221097917","DOIUrl":"https://doi.org/10.1177/11786221221097917","url":null,"abstract":"The study investigates the impact of land use/cover changes on the dynamics of surface temperature in the Abaminus watershed, Northwest Ethiopia. Landsat-5 images of 1987, 1999, and 2010, and the Landsat-8 image of 2018 were used as the sources of data. The land use/cover changes were calculated using a land-use transition matrix. Data generated from household surveys were presented using percentage values to identify the driving forces of land use/cover changes. The land surface temperature (LST) result was quantified using the respective index equation. Results indicated that wetland, forest, shrublands, and grasslands declined by 96.6%, 72%, 77.7%, and 89.4% respectively over the analysis period. The encroachment of cultivation and overgrazing to marginal lands, weak institutional arrangement, sedimentation, high drainage of wetlands for crop production, and recurrent drought were the major driving forces behind the land use/cover change. Within this effect, the average land surface temperature was increased by 11.5°C, 3.22°C, and 2.02°C due to wetland loss, clearing of the forest, and decline of shrublands respectively for the last 31 years. LSTs had correspondingly decreased by 5.42°C and 3.77°C on the afforested barren surfaces and planted shrublands. Hence, there should be an improved institutional arrangement for managing open access resources through the participation of local people in the management for minimizing the increase of land surface temperature in the study watershed. Moreover, enclosure management and plantation of multipurpose species on degraded communal lands shall be scaled-up to significantly reduce land surface temperatures.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48929379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Das, Nandineni Rama Devi, Sanjana Shetty, Rituka Kapur, Udaya Shankar H N, S. Nair
{"title":"Analyzing the Factors Contributing to Bacterial Contamination of Domestic Water Sources in Estuarine Islands of Coastal Karnataka, India","authors":"S. Das, Nandineni Rama Devi, Sanjana Shetty, Rituka Kapur, Udaya Shankar H N, S. Nair","doi":"10.1177/11786221221111960","DOIUrl":"https://doi.org/10.1177/11786221221111960","url":null,"abstract":"Contamination of domestic water sources is a major concern in estuarine islands of coastal Karnataka. Awareness about practices for waste management and protection of water sources on these islands is poor. Using water having bacterial presence for domestic purposes can lead to various health risks in humans. The research investigates various factors leading to bacterial contamination of domestic water sources at Mudukudru island of Swarna river, in the Udupi district of Karnataka. Samples were collected during the Pre-monsoon (December–May) and Monsoon (June–September) seasons from 43 wells of individual houses on the island. The total concentration of bacteria, in the water samples was determined from microbial analysis. The multiple tube, most probable number (MPN), fermentation technique was adopted to determine the total coliform in the samples. Factors like the presence or absence of well lining, well housing, wellhead above or below ground level, the distance of well from sewage pits, and the distance of livestock from the wells were correlated. The results indicated bacterial contamination in 32 wells during the monsoon as compared to pre-monsoon data, with the total coliform count exceeding the standard of 500 MPN/100 mL. A significant relation between total coliform count in the water samples and the absence of well lining with sanitary protection is observed with p-value = .00 (p ⩽ .05) and wells located near (<10.0 m) to sewage pit with p-value ⩽ .05, were recorded respectively during both the seasons of sampling. The study highlights the major factors leading to bacterial contamination of wells on the island. Awareness about the planning of domestic wells through community-driven programs and hygiene education can be beneficial for the sustainable future of these islands.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43599259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Shojaei, Pedram Ashofteh, Ngakan Ketut Acwin Dwijendra, A. Melesse, A. Shahvaran, S. Shojaei, Iman Homayoonnezhad
{"title":"Retraction Notice: RETRACTED: “Impacts on Global Temperature During the First Part of 2020 Due to the Reduction in Human Activities by COVID-19”","authors":"S. Shojaei, Pedram Ashofteh, Ngakan Ketut Acwin Dwijendra, A. Melesse, A. Shahvaran, S. Shojaei, Iman Homayoonnezhad","doi":"10.1177/11786221221101901","DOIUrl":"https://doi.org/10.1177/11786221221101901","url":null,"abstract":"One of the major events transpiring in the 21st century is the unforeseen outbreak due to COVID-19. This pandemic directly altered human activities due to the forced confinement of millions of inhabitants over the world. It is well known that one of the main factors that affect global warming is human activities; however, during the first part of 2020, they were severely reduced by the spread of the coronavirus. This study strives to investigate the possible impact of quarantine initiation worldwide and the linked outcomes on a global scale related to the temperatures since the worthwhile. To achieve this goal, the evaluation of the short-term temperature status at the continental scale was conducted in two particular forms: (i) concerning the short-term comparing the data from 2016, 2017, 2018, and 2019; and, assessing the long-term differences comprising 30 years of data (1981–2010). The data employed in this study were obtained from the respective NASA and Copernicus databases. The temperature maps and temperature differences of different years before the pandemic was compared to the Coronavirus onset (winter and spring) data with the aid of Python programing language. Continental temperature mapping results showed that the temperature difference of the American continent had attained its maximum value in January 2016, and yet, the temperature is observed to be warmer than in 2016. The largest difference in the short-term temperature in terms of comparison to 2020 referred to the months when the maximum quarantine began, that is, February and March, and the temperature was cooler in comparison to the prior years. The long-term mean study denoted that the temperatures throughout the South American continent remained consistent during the first part of 2020 in comparison to the 30-year average data, but temperatures in North America declined from February to April. Similarly, the temperatures in Eurasia in April is observed to be lower compared to the 30 years average in February and March. Accordingly, the average temperature of the Earth has dropped about 0.3°C compared to 2019. We concluded that temperature could show some specific changes and hypothesize that under the COVID-19 pandemic, it could manifest different trends. The next step would be to conduct further analysis to observe at the regional scale if under unforeseen phenomena are or not affecting global warning during the coming years.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":"16 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47986424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuong Van Huynh, T. G. Pham, L. Nguyen, Hai T. Nguyen, P. Nguyen, Quy Ngoc Phuong Le, P. T. Tran, M. T. H. Nguyen, Tuyet Thi Anh Tran
{"title":"Application GIS and remote sensing for soil organic carbon mapping in a farm-scale in the hilly area of central Vietnam","authors":"Chuong Van Huynh, T. G. Pham, L. Nguyen, Hai T. Nguyen, P. Nguyen, Quy Ngoc Phuong Le, P. T. Tran, M. T. H. Nguyen, Tuyet Thi Anh Tran","doi":"10.1177/11786221221114777","DOIUrl":"https://doi.org/10.1177/11786221221114777","url":null,"abstract":"Soil Organic Carbon (SOC) influences many soil properties including nutrient and water holding capacity, nutrient cycling and stability, improved water infiltration and aeration. It also is an essential parameter in the assessment of soil quality, especially for agricultural production. However, SOC mapping is a complicated process that is costly and time-consuming due to the physical challenges of the natural conditions that is being surveyed. The best model for SOC mapping is still in debate among many researchers. Recently, the development of machine learning and Geographical Information Systems (GIS) has provided the potential for more accurate spatial prediction of SOC content. This research was conducted in a relatively small-scale capacity in the Central Vietnam region. The aim of this study is to compare the accuracy of Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Random Forest (RF) methods for SOC interpolation, with a dataset of 47 soil samples for an area of 145 hectares. Three environmental variables including elevation, slope, and the Normalized Difference Vegetation Index (NDVI) were used for the RF model. In the RF model, the values of the number of variables randomly sampled as candidates at each split, (mtry), and the number of bootstrap replicates, (ntree), were determined in terms of 1 and 1,000 respectively The results at our research site showed that using IDW is the most accurate method for SOC mapping, followed by the methods of RF and OK respectively. Concerning SOC mapping based-on auxiliary variables, in areas where there is human activity, the selection of auxiliary variables should be carefully considered because the variation in the SOC may not only be due to environmental variables but also by farming technologies.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43109963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extracting the Critical Points of Formaldehyde (HCHO) Emission Model in Hot Desert Climate","authors":"Chuloh Jung, N. S. Mahmoud","doi":"10.1177/11786221221105082","DOIUrl":"https://doi.org/10.1177/11786221221105082","url":null,"abstract":"Indoor air pollutants have various emission patterns and are influenced by indoor microclimate, the physical properties of building materials, and types of chemical substances. The difference in these emission patterns affects the prediction via simulation. This paper aims to extract factors that have an important influence on selecting empirical models by examining the emission pattern of formaldehyde (HCHO) from building materials. As a methodology, Small Chamber Pollutant Emission Test was used for six different flooring and wallpaper specimens, and HCHO was sampled and analyzed using HPLC (High-Performance Liquid Chromatography). The result showed that the higher the linear relationship between emission intensity and time, the more appropriate the first-order reduction model, such as flooring-A (R2 = .99), flooring-B (R2 = .94), wallpaper-A (R2 = .99), and wallpaper-C (R2 = .98). The emission pattern of HCHO in building materials is classified into three types: In type I (R2 = .00–.11), the emission of chemical substances reaches the maximum after the start of the experiment and decreases relatively rapidly. Type II (R2 =.00–.41), the emission pattern having the shape of a vertex with a refined concentration ascending and a gentle descending and is a type in which the suitability is significantly high in the concentration descending section, and Type III (R2 = .33–.60), which shows a mild linear increase and decreases trend in the ascending and concentration dropping sections. It is a type that indicates the suitability with the predicted value in a meaningful way in the entire area. Even though many previous studies focused on the concentration descending section in different materials (R2 = .51–.95), it was confirmed that the emission characteristics in the initial concentration ascending section are also critical points for simulation model selection since R2 of ascending section of Type II (.67–.70) and Type III (.77–.93) turned out statistically meaningful except Type I (.02–.25).","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43679317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Lichens-Mediated Mechanism for Environmental Biodeterioration","authors":"M. Thakur, SP Pourush Shrikhandia, Vinod Kumar","doi":"10.1177/11786221221131004","DOIUrl":"https://doi.org/10.1177/11786221221131004","url":null,"abstract":"As mediators in soil formation, lichens play an essential role in the physical and biological formation of the natural environment. A recent study showed that they are capable of biodegrading stone substrates in a little amount of time, despite being excluded in a geological setting. Many species, mainly those able to produce an oxalate at the thallus-substratum interface, can alter the surface, affecting it chemically. The oxalate remains a noticeable increase even after the lichen has faded, and it makes a major contribution to the structure and composition of the thallus itself. These severe oxalate deposits on historical sites have been alternatively attributed to the earlier as the consequence of air pollutants, prior mechanical/chemical renovation treatments, as well as environmental deterioration. Lichen growth on building materials and biodegradation are frequently based on environmental variables. The biogeophysical and biogeochemical weathering of the substrate by the lichens is the mechanism underlying biodegradation. For stone surfaces, lichens can endeavor bio protection by acting as a barrier against weathering, holding humidity, improving permeability, reducing heat stress and erosion, and absorbing contaminants. Lichen’s significance as a biodeteriorant, its colonization and impact on monuments, as well as bioprotection, are all discussed in the current review.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43871071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mekonnen Maschal Tarekegn, R. Balakrishnan, Andualem Mekonnen Hiruy, Ahmed Hussen Dekebo, Hema Susmitha Maanyam
{"title":"Nano-Clay and Iron Impregnated Clay Nanocomposite for Cu2+ and Pb2+ Ions Removal from Aqueous Solutions","authors":"Mekonnen Maschal Tarekegn, R. Balakrishnan, Andualem Mekonnen Hiruy, Ahmed Hussen Dekebo, Hema Susmitha Maanyam","doi":"10.1177/11786221221094037","DOIUrl":"https://doi.org/10.1177/11786221221094037","url":null,"abstract":"Several physicochemical techniques have been widely studied for heavy metals removal despite most of them are associated with challenges of higher cost, accessibility, and complex technical feasibility. In this study, nano-sorbent materials were developed from a naturally available clay matrices and its heavy metals (Cu2+ and Pb2+) removal capacity was tested at its pristine and iron impregnated form. Both top to down and borohydride reduction methods were used to produce the nano-sorbents. The nano-sorbents were characterized by XRD, XRF, SEM, FTIR, BET, and TGA/DGA. The sorption was studied in batch experiments. The surface area, pore-volume, and pore diameter of nano-clay were found 43.49 m2/g, 0.104 cm3/g, and 2.81 nm, respectively while iron impregnated nano-clay has shown a surface area (73.11 m2/g), pore-volume (0.153 m3/g), and pore diameter (3.83 nm). Both nanoparticles have shown a mesoporous nature. The highest Cu2+ and Pb2+ removal capacity of nano-clay was 99.2% (~11.9 mg/g) and 99.6% (~11.95 mg/g), respectively. Whereas, the iron impregnated nano-clay has achieved the highest Cu2+ and Pb2+ removal efficiency 99.8% (~11.97 mg/g) and 99.7% (11.96 mg/g), respectively. The highest Cu2+ adsorption efficiency of iron impregnated nanoclay was achieved at pH 5.0, adsorbent dose 0.83 g/L, contact time 150 minutes, and Cu2+ initial concentration 4 ppm while its highest Pb2+ adsorption activity was achieved at pH 5.0, contact time (90 minutes), Pb2+ initial concentration (6 ppm), and the adsorbent dose (0.67 g/L). Whereas, the Cu2+ adsorption using nano-clay was highest at pH 5.0, contact time (180 minutes), adsorbent dose (1.0 g/L), and Cu2+ initial concentration (2 ppm). While, pH 5.0, contact time (90 minutes), adsorbent dose (0.83 g/L), and Pb2+ initial concentration (4 ppm) was found to the conditions of highest Pb2+ removal. In all cases, the pseudo-second-order kinetics indicated the presence of chemisorption. Langmuir adsorption characteristics has been reflected on Pb2+ and Cu2+ removal activities of the nanoclay and iron impregnated nanoclay, respectively. Whereas, Freundlich isotherm model was better fitted for Cu2+ adsorption activity of the nanoclay. The −ΔG (<−20 KJ/mol), +ΔH°, and +ΔS° have shown a spontaneous and endothermic adsorption activity with a high level of adsorbents disorder. In general, the result of iron impregnated nano-clay has shown a promising result for the removal of Cu2+ and Pb2+ aqueous solution.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47436094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microplastic Presence in the Mangrove Crab Ucides occidentalis (Brachyura: Ocypodidae) (Ortmann, 1897) Derived From Local Markets in Tumbes, Peru","authors":"Angelica Aguirre-Sanchez, S. Purca, A. Indacochea","doi":"10.1177/11786221221124549","DOIUrl":"https://doi.org/10.1177/11786221221124549","url":null,"abstract":"In northern Peru, the mangrove crab Ucides occidentalis is of great importance due to its ecological, economic, and social role. In this study, we reported for the first time the presence of microplastics in the gills and digestive tract of the mangrove crab U. occidentalis derived from local markets in Tumbes. Microplastics were identified in 100% of the crabs analyzed with a total of 921 items, 475 items (52.57%) found in the gills, and 446 (48.43%) found in the digestive tract. The size range was established in 2 to 250 µm, 250 to 500 µm, 500 to 1 mm, and 1 to 5 mm, microplastics with sizes between 2 and 250 µm were the most common with 53.79% in the digestive tract and 90% in the gills. A total of six different types of microplastic were recorded; The highest percentages for each tissue were fibers (59.64%–61.05%) and films (19.28%−36.63%), with clear fibers being the most prevalent microplastic type in both tissues. Microplastics with less than 250 µm size were found 90% in the gills and 53.79% in the crab digestive tract. Although the present study is a baseline for rapid identification of microplastics in mangrove crab, we suggested that these findings provided more information on the state of contamination as well as food security alert for local markets.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42571187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reuse of Treated Domestic Wastewater by Employing Artificial Wetlands in Panama","authors":"Liz Miller Gil, José Fábrega Duque","doi":"10.1177/11786221221074401","DOIUrl":"https://doi.org/10.1177/11786221221074401","url":null,"abstract":"Reuse of treated wastewater in irrigation is an alternative to achieve greater water availability and benefits to the soil due to its nutrient content. It represents a solution to challenges in water management, climate change and water scarcity in dry seasons. In Panama’s Dry Arch, the lack of water is critical during dry season months, which makes it essential to look for sustainable alternatives as water source. This paper describes the use of artificial wetlands with horizontal subsurface flow, and we are going to use partially treated domestic wastewater. The aquatic plant types employed were Echinochloa polystachya (German grass) and Brachiaria arrecta (Tanner grass) with the objective of improve the quality of the effluent from the Wastewater Treatment Plant (WWTP) in Chitre for the irrigation of forages. This study was carried out from August to December 2019. Fine Gravel was used in this study as a substrate. The parameters analyzed were pH, Total dissolved solids, Electrical Conductivity, Chemical Oxygen Demand, Turbidity, Chlorides, Sulfates, Iron, Chromium+6, Copper; nutrients such as Total nitrogen and Total phosphorus. Fecal coliforms were also analyzed. Results showed that treated wastewater is a viable alternative for irrigation due to its high nutrient content, but it must be managed safely so as not to generate risks to public health.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42598144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}