GIS和遥感在越南中部丘陵地区农田土壤有机碳制图中的应用

IF 3.5 Q2 ENVIRONMENTAL SCIENCES
Chuong Van Huynh, T. G. Pham, L. Nguyen, Hai T. Nguyen, P. Nguyen, Quy Ngoc Phuong Le, P. T. Tran, M. T. H. Nguyen, Tuyet Thi Anh Tran
{"title":"GIS和遥感在越南中部丘陵地区农田土壤有机碳制图中的应用","authors":"Chuong Van Huynh, T. G. Pham, L. Nguyen, Hai T. Nguyen, P. Nguyen, Quy Ngoc Phuong Le, P. T. Tran, M. T. H. Nguyen, Tuyet Thi Anh Tran","doi":"10.1177/11786221221114777","DOIUrl":null,"url":null,"abstract":"Soil Organic Carbon (SOC) influences many soil properties including nutrient and water holding capacity, nutrient cycling and stability, improved water infiltration and aeration. It also is an essential parameter in the assessment of soil quality, especially for agricultural production. However, SOC mapping is a complicated process that is costly and time-consuming due to the physical challenges of the natural conditions that is being surveyed. The best model for SOC mapping is still in debate among many researchers. Recently, the development of machine learning and Geographical Information Systems (GIS) has provided the potential for more accurate spatial prediction of SOC content. This research was conducted in a relatively small-scale capacity in the Central Vietnam region. The aim of this study is to compare the accuracy of Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Random Forest (RF) methods for SOC interpolation, with a dataset of 47 soil samples for an area of 145 hectares. Three environmental variables including elevation, slope, and the Normalized Difference Vegetation Index (NDVI) were used for the RF model. In the RF model, the values of the number of variables randomly sampled as candidates at each split, (mtry), and the number of bootstrap replicates, (ntree), were determined in terms of 1 and 1,000 respectively The results at our research site showed that using IDW is the most accurate method for SOC mapping, followed by the methods of RF and OK respectively. Concerning SOC mapping based-on auxiliary variables, in areas where there is human activity, the selection of auxiliary variables should be carefully considered because the variation in the SOC may not only be due to environmental variables but also by farming technologies.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application GIS and remote sensing for soil organic carbon mapping in a farm-scale in the hilly area of central Vietnam\",\"authors\":\"Chuong Van Huynh, T. G. Pham, L. Nguyen, Hai T. Nguyen, P. Nguyen, Quy Ngoc Phuong Le, P. T. Tran, M. T. H. Nguyen, Tuyet Thi Anh Tran\",\"doi\":\"10.1177/11786221221114777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil Organic Carbon (SOC) influences many soil properties including nutrient and water holding capacity, nutrient cycling and stability, improved water infiltration and aeration. It also is an essential parameter in the assessment of soil quality, especially for agricultural production. However, SOC mapping is a complicated process that is costly and time-consuming due to the physical challenges of the natural conditions that is being surveyed. The best model for SOC mapping is still in debate among many researchers. Recently, the development of machine learning and Geographical Information Systems (GIS) has provided the potential for more accurate spatial prediction of SOC content. This research was conducted in a relatively small-scale capacity in the Central Vietnam region. The aim of this study is to compare the accuracy of Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Random Forest (RF) methods for SOC interpolation, with a dataset of 47 soil samples for an area of 145 hectares. Three environmental variables including elevation, slope, and the Normalized Difference Vegetation Index (NDVI) were used for the RF model. In the RF model, the values of the number of variables randomly sampled as candidates at each split, (mtry), and the number of bootstrap replicates, (ntree), were determined in terms of 1 and 1,000 respectively The results at our research site showed that using IDW is the most accurate method for SOC mapping, followed by the methods of RF and OK respectively. Concerning SOC mapping based-on auxiliary variables, in areas where there is human activity, the selection of auxiliary variables should be carefully considered because the variation in the SOC may not only be due to environmental variables but also by farming technologies.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221221114777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221221114777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

土壤有机碳(SOC)影响许多土壤特性,包括养分和持水能力、养分循环和稳定性、改善水分渗透和通气。它也是评估土壤质量的一个重要参数,尤其是对农业生产而言。然而,SOC测绘是一个复杂的过程,由于所调查的自然条件的物理挑战,成本高昂且耗时。SOC映射的最佳模型仍在许多研究人员中争论不休。最近,机器学习和地理信息系统(GIS)的发展为SOC含量的更准确的空间预测提供了潜力。这项研究是在越南中部地区进行的,规模相对较小。本研究的目的是比较反距离加权(IDW)、普通克里格(OK)和随机森林(RF)方法对SOC插值的准确性,使用145公顷面积的47个土壤样本数据集。RF模型使用了三个环境变量,包括海拔、坡度和归一化植被指数(NDVI)。在RF模型中,每次分裂时随机抽样作为候选变量的数量(mtry)和自举重复次数(ntree)的值分别为1和1000。我们研究现场的结果表明,使用IDW是SOC映射最准确的方法,其次分别是RF和OK方法。关于基于辅助变量的SOC映射,在有人类活动的地区,应仔细考虑辅助变量的选择,因为SOC的变化不仅可能是由于环境变量,还可能是由于农业技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application GIS and remote sensing for soil organic carbon mapping in a farm-scale in the hilly area of central Vietnam
Soil Organic Carbon (SOC) influences many soil properties including nutrient and water holding capacity, nutrient cycling and stability, improved water infiltration and aeration. It also is an essential parameter in the assessment of soil quality, especially for agricultural production. However, SOC mapping is a complicated process that is costly and time-consuming due to the physical challenges of the natural conditions that is being surveyed. The best model for SOC mapping is still in debate among many researchers. Recently, the development of machine learning and Geographical Information Systems (GIS) has provided the potential for more accurate spatial prediction of SOC content. This research was conducted in a relatively small-scale capacity in the Central Vietnam region. The aim of this study is to compare the accuracy of Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Random Forest (RF) methods for SOC interpolation, with a dataset of 47 soil samples for an area of 145 hectares. Three environmental variables including elevation, slope, and the Normalized Difference Vegetation Index (NDVI) were used for the RF model. In the RF model, the values of the number of variables randomly sampled as candidates at each split, (mtry), and the number of bootstrap replicates, (ntree), were determined in terms of 1 and 1,000 respectively The results at our research site showed that using IDW is the most accurate method for SOC mapping, followed by the methods of RF and OK respectively. Concerning SOC mapping based-on auxiliary variables, in areas where there is human activity, the selection of auxiliary variables should be carefully considered because the variation in the SOC may not only be due to environmental variables but also by farming technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Soil and Water Research
Air Soil and Water Research ENVIRONMENTAL SCIENCES-
CiteScore
7.80
自引率
5.30%
发文量
27
审稿时长
8 weeks
期刊介绍: Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信