Air Soil and Water Research最新文献

筛选
英文 中文
Reuse of Treated Domestic Wastewater by Employing Artificial Wetlands in Panama 巴拿马利用人工湿地对处理后的生活污水进行再利用
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221074401
Liz Miller Gil, José Fábrega Duque
{"title":"Reuse of Treated Domestic Wastewater by Employing Artificial Wetlands in Panama","authors":"Liz Miller Gil, José Fábrega Duque","doi":"10.1177/11786221221074401","DOIUrl":"https://doi.org/10.1177/11786221221074401","url":null,"abstract":"Reuse of treated wastewater in irrigation is an alternative to achieve greater water availability and benefits to the soil due to its nutrient content. It represents a solution to challenges in water management, climate change and water scarcity in dry seasons. In Panama’s Dry Arch, the lack of water is critical during dry season months, which makes it essential to look for sustainable alternatives as water source. This paper describes the use of artificial wetlands with horizontal subsurface flow, and we are going to use partially treated domestic wastewater. The aquatic plant types employed were Echinochloa polystachya (German grass) and Brachiaria arrecta (Tanner grass) with the objective of improve the quality of the effluent from the Wastewater Treatment Plant (WWTP) in Chitre for the irrigation of forages. This study was carried out from August to December 2019. Fine Gravel was used in this study as a substrate. The parameters analyzed were pH, Total dissolved solids, Electrical Conductivity, Chemical Oxygen Demand, Turbidity, Chlorides, Sulfates, Iron, Chromium+6, Copper; nutrients such as Total nitrogen and Total phosphorus. Fecal coliforms were also analyzed. Results showed that treated wastewater is a viable alternative for irrigation due to its high nutrient content, but it must be managed safely so as not to generate risks to public health.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42598144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Identification, Quantification, and Evaluation of Microplastics Removal Efficiency in a Water Treatment Plant (A Case Study in Iran) 水处理厂微塑料去除效率的鉴定、定量和评价(以伊朗为例)
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221134945
H. Sharifi, H. Movahedian Attar
{"title":"Identification, Quantification, and Evaluation of Microplastics Removal Efficiency in a Water Treatment Plant (A Case Study in Iran)","authors":"H. Sharifi, H. Movahedian Attar","doi":"10.1177/11786221221134945","DOIUrl":"https://doi.org/10.1177/11786221221134945","url":null,"abstract":"Microplastics (MPs) are among the emerging pollutants that recently attracted the researcher’s attention around the world. These particles can absorb other chemicals, and microbial contaminants and enter them into the food chain, and environment. This study was conducted to investigate the occurrence of MPs in raw and treated drinking water and evaluate the MPs removal efficiency in a drinking water treatment plant (DWTP) in Iran. MPs particles were counted at different stages of DWTP, using a scanning electron microscope after the initial preparation steps include filtration, and chemical digestion, and then examined for the nature of the particles using a micro-Raman spectrometer. The concentration of MPs in influent, clarifier’s effluent, and DWTP’s effluent were 1597.7 ± 270.3, 676.2 ± 69.0, and 260.5 ± 48.9 MPs/L, respectively. The total efficiency of the DWTP in MPs removal was 83.7%, which the clarification and filtration stage removed 57.7%, and 26.0% of total MPs, respectively. The most abundant polymers identified were PP, PE, and PET. Despite the effective removal of MPs in the DWTP, on average 2.25 × 1011 ± 4.23 × 1010 MPs are daily discharged into the water distribution system through the effluent of this DWTP.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42754713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Precipitation-Driven Anthropogenic Pollutant Fluctuations Within Standing Water Sources of the Edwards Aquifer Region, Texas 德克萨斯州爱德华兹含水层地区静水源中降水驱动的人为污染物波动
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221108213
Cheyenne H Love, Brian G. Laub
{"title":"Precipitation-Driven Anthropogenic Pollutant Fluctuations Within Standing Water Sources of the Edwards Aquifer Region, Texas","authors":"Cheyenne H Love, Brian G. Laub","doi":"10.1177/11786221221108213","DOIUrl":"https://doi.org/10.1177/11786221221108213","url":null,"abstract":"The objective of this study was to assess the contribution of urban runoff in pollutant delivery to standing water pools within the Edwards Aquifer region of Texas. Grab samples of water were collected weekly over 5 months at one urban pool, one undeveloped pool, and one control pond that received minimal runoff. Samples were tested for nitrates, total dissolved phosphorus, Escherichia coli, and other coliform bacteria. The urban site had higher nitrate, E. coli, and other coliform bacteria concentrations than the undeveloped site. Significant positive linear relationships between weekly antecedent rainfall and both nitrate and E. coli were found at the urban site but not the undeveloped site. Water quality parameters at the control site remained stable, suggesting increases in nitrate and E. coli at the urban site were caused by runoff. Using publicly available data, relationships between water quality and weekly antecedent discharge were tested at 24 additional sites varying in land use. Positive relationships for E. coli were found at several urban sites, supporting runoff as a contributor to bacterial loading. Relationships for nitrate were variable, but all additional sites had flowing water, suggesting a unique response of water quality to urban runoff at the sampled urban pool.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46509010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Relevance of Integrated Air, Soil and Water Research Studies for the New Millennia 新千禧一代空气、土壤和水综合研究的相关性
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221086256
J. Rodrigo‐Comino, E. Bandala, M. T. Latif
{"title":"Relevance of Integrated Air, Soil and Water Research Studies for the New Millennia","authors":"J. Rodrigo‐Comino, E. Bandala, M. T. Latif","doi":"10.1177/11786221221086256","DOIUrl":"https://doi.org/10.1177/11786221221086256","url":null,"abstract":"Our ecosystems are facing changes at a local andglobal scale because of human interventions. These transformations are a result of drastic urbanization, rapid industrialization, and natural resources exploitation to provide livelihoods and commodities for the increasing population. Recent global events such as the COVID-19 pandemic or cross-bordering conflicts are not delaying these changes. To understand these changes, increasing efforts of the scientific community to find sustainable solutions is vital as it is consistent financial support from governments and scientific agencies. Air, Soil and Water Research (ASW) Editorial Board envision multidisciplinary and transversal research as an interesting strategy to develop knowledge and useful datasets which can directly benefit society through efficient land management plans.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48438641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantifying Impacts of Future Climate on the Crop Water Requirement, Growth Period, and Drought on the Agricultural Watershed, in Ethiopia 量化埃塞俄比亚未来气候对作物需水量、生长期和农业流域干旱的影响
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221135151
T. Abraham, Alemayehu Muluneh
{"title":"Quantifying Impacts of Future Climate on the Crop Water Requirement, Growth Period, and Drought on the Agricultural Watershed, in Ethiopia","authors":"T. Abraham, Alemayehu Muluneh","doi":"10.1177/11786221221135151","DOIUrl":"https://doi.org/10.1177/11786221221135151","url":null,"abstract":"Quantifying the influence of climate change on the crop growth period, water requirement, and drought conditions is essential for integrated crop production system planning. In this study, the effects of climate models from the Coupled Model Inter-comparison Product (CMIP5) on Crop Water Requirement (CWR), Length of Growth Period (LGP), and drought conditions were quantified for Lake Hawassa watershed in Ethiopia. In this study, two regional climate models were selected that showed better performance on the evaluation criteria after applying a quantile mapping bias correction procedure. The impact analysis was conducted for two Representative Concentration Pathways (RCPs) (RCP4.5 and RCP 8.5). Drought analysis was performed using the standardized anomalies of rainfall (S-index). The future growing season of the area is projected to be between April 15 and May 1 on average for all years. The total crop water requirement was projected to increase to a value of 3,258.7 mm on average under both the RCP4.5 and RCP8.5 scenarios for all the stages at the end of 2080s from its baseline value of 3,180.4 mm. In addition, the drought forecast analysis shows extreme drought with S-index values <−1.6 in the 2050s and 2080s under RCP 8.5. Of all the time periods, the 2050s recorded the smallest number of years (10 out of 30 years) with a positive S-index value, indicating projected precipitation shortages during these time periods under RCP 8.5. With this result, the combined impacts of climate change on crop production factors are expected to be high in the region. The results suggest an early warning for the study region considering low economic and technological development as in many developing parts of the world. Therefore, understanding the future changes in climate variables and their impacts can be an important input for developing a better plan for adaptation and mitigation measures.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47784262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Climate Variability Patterns and Farmers’ Perceptions of Its Impact on Food Production: A Case Study of the Gelda Watershed in the Lake Tana Basin in Northwest Ethiopia 气候变率模式和农民对其对粮食生产影响的认识:以埃塞俄比亚西北部塔纳湖盆地盖尔达流域为例
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221135093
Mesfin Anteneh
{"title":"Climate Variability Patterns and Farmers’ Perceptions of Its Impact on Food Production: A Case Study of the Gelda Watershed in the Lake Tana Basin in Northwest Ethiopia","authors":"Mesfin Anteneh","doi":"10.1177/11786221221135093","DOIUrl":"https://doi.org/10.1177/11786221221135093","url":null,"abstract":"This study looked at patterns of erratic climate and farmer perceptions in the Gelda watershed of Lake Tana Basin in northwestern Ethiopia. The National Meteorological Agency of Ethiopia provided essential climatic data for the period between 1981 and 2011. A household survey and focus group discussions were also used to understand about local communities’ perceptions of climate variability and its impact on food production. Time series trend analysis of observed rainfall and temperature conditions was detected using linear regression analysis. To compare the means of climatic parameters and determine whether the average difference was significantly different from zero, the paired sampled t-test was used. The study found that the average annual temperature trend increased by 1.1°C, while the amount and distribution of annual and monthly rainfall decreased, varied across the catchment, and fluctuated during the study periods (1981–2011) at mean temperature rise with an average rate of 0.17°C in the last decade. The variability of annual and monthly rainfall in terms of intensity and distribution has decreased and varied across the watershed. The analysis revealed that annual rainfall variability was variable in the upper catchment (CV > 11.7%) and lower catchment (CV > 14.4%). The amount and intensity of temperature, on the other hand, increased throughout the study watershed, despite observed variation both spatially and temporally (stated decades). Farmers’ understanding and expression of climate variability in terms of erratic rainfall distribution, decreasing amount, and increasing temperature over the last three decades, however, matched the observed data. Moreover, farmers are pointed out that high population pressure; deforestation and intensified agriculture are responsible factors for the variability of climate in the study watershed. Therefore, based on the findings, scientist and policymakers has to design appropriate adaptation measures that can tackle the aggravation of climate variability for future.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43838542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O3 and Drought Effects on Steady State Conductance and Kinetics in Pima Cotton O3和干旱对皮马棉稳态电导和动力学的影响
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221114313
D. Grantz, N. Grulke
{"title":"O3 and Drought Effects on Steady State Conductance and Kinetics in Pima Cotton","authors":"D. Grantz, N. Grulke","doi":"10.1177/11786221221114313","DOIUrl":"https://doi.org/10.1177/11786221221114313","url":null,"abstract":"The degree to which ozone (O3) exposure and drought affect stomatal control of water loss and respond to environmental stimuli such as varying light is poorly characterized. To that end, we exposed Pima cotton to chronic O3 exposure (month-long daytime exposures) with and without sufficient water, as well as short term acute O3 exposure and varying light levels to understand stomatal kinetics. Chronic, month-long exposure to moderately high O3 (~114 ppb) reduced daytime steady state stomatal conductance (gs), as did water deficit. Both stomatal opening and closing displayed dose specific, “sluggish” responses to step-changes in illumination with acute, 1-day, O3 exposures of 0, 50, 100, and 125 ppb. At higher concentration (150 ppb), stomatal control of both opening and closing was degraded. Altered steady state and dynamic stomatal function suggest that elevated ambient O3, expected to increase in the future, may increasingly influence field water management and appropriate crop choices.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43617695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Performance of AquaCrop Model for Potato Production Under Deficit Irrigation 亏缺灌溉条件下马铃薯生产的作物模型性能评价
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221108216
A. Wale, M. Dessie, H. Kendie
{"title":"Evaluating the Performance of AquaCrop Model for Potato Production Under Deficit Irrigation","authors":"A. Wale, M. Dessie, H. Kendie","doi":"10.1177/11786221221108216","DOIUrl":"https://doi.org/10.1177/11786221221108216","url":null,"abstract":"Crop modeling is a powerful tool for estimating yield and water use efficiency, and it plays an important role in determining water management strategies. Under the condition of scarce water supply and drought, deficit irrigation can lead to greater economic gains by maximizing yield per unit of water. Studies have shown that deficit irrigation significantly increased yield, crop evapotranspiration, and water use efficiency as compared to full irrigation requirement. However, this approach requires precise knowledge of crop response to water as drought tolerance varies considerably by growth stage, species and cultivars. This study was conducted in Lasta district, for two successive years to evaluate the effects of water shortage on potato production and water use efficiency, as well as to test the AquaCrop model for potato-producing areas. The irrigation water levels for potatoes were 100%, 75%, and 50% of crop evapotranspiration (ETc). Six treatments were arranged using a randomized complete block design. Climate, soil, and crop data were calibrated using observed weather parameters, and measured crop parameters conducted in the 2018/19 growing season. The model was validated using the observed data conducted in the 2019/20 growing season. The calibration of the model revealed a good fit for canopy cover (CC) with a coefficient of determination (R2) = .98, Root mean square error (RMSE) = 9.6%, Nash-Sutcliffe efficiency (E) = 0.92, index of agreement (d) = 0.98, and coefficient of residual moss (CRM) = −0.07, and good prediction for biomass (R2 = .98, RMSE = 1.8 t ha−1, E = 0.96, d = 0.99, CRM = −0.13). Similarly, the validation result showed good fit for CC by 100% water application at development and mid growth season and a 75% water applied at the other stages (R2 = .98, RMSE = 9.4%, E = 0.94, d = 0.98, CRM = −0.12). The AquaCrop model is simple to use, requires fewer input data, and has a high level of simulation precision, making it a useful tool for forecasting crop yield under deficit irrigation and water management to increase agricultural water efficiency in data-scarce areas.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42134725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Farmers’ Perceptions about Irrigation Roles in Climate Change Adaptation and Determinants of the Choices to WUE-Improving Practices in Southern Ethiopia 埃塞俄比亚南部农民对灌溉在气候变化适应中的作用的认识以及用水方式改善措施选择的决定因素
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221092454
A. Chinasho, B. Bedadi, T. Lemma, T. Tana, T. Hordofa, Bisrat Elias
{"title":"Farmers’ Perceptions about Irrigation Roles in Climate Change Adaptation and Determinants of the Choices to WUE-Improving Practices in Southern Ethiopia","authors":"A. Chinasho, B. Bedadi, T. Lemma, T. Tana, T. Hordofa, Bisrat Elias","doi":"10.1177/11786221221092454","DOIUrl":"https://doi.org/10.1177/11786221221092454","url":null,"abstract":"Irrigation enhances resilience to the negative impacts of climate change through sustainable food production and environmental health. However, water is a scarce resource that needs efficient utilization. This study explored (1) farmers’ perceptions about the roles of irrigation in climate change adaptation and (2) determinants of the choices to selected WUE-improving soil and water management practices in southern Ethiopia. A multistage sampling technique was used to survey 373 households. The results indicated that the majority of surveyed households were male-headed: 90.6%, above 40 years old: 56.8%, and uneducated: 73.5%. They perceived that irrigation improved their net income (INCOM): 88%, acted as insurance against decreased rainfall (IADR): 44.8%, and insurance against increased temperature (IAIT): 70%; though the water was not available in all dry seasons: 55%. The choice to tightly close water-diversion points after use is significantly positively (p < .05) affected by education level (EDUC) and perceptions about irrigation water as IADR and IAIT. However, the farmers’ perceptions about INCOM significantly negatively affected their choice to not irrigate at peak sunshine hours. The choice of mulching is significantly positively affected by the perception of INCOM and IAIT. Similarly, the choice of using compost is significantly positively affected by EDUC and their perceptions of IADR and IAIT, and significantly negatively affected by INCOM. The choice of not practicing conventional tillage is strongly negatively affected by the farmers’ perceptions about equitable water distribution (EWD) and INCOM. Therefore, it can be concluded that the farmers’ understanding of the roles of irrigation in climate change adaptation is good but their understanding of WUE-improving practices is poor due to poor water distribution systems and low education levels. So, improving water distribution systems and farmers’ awareness about WUE-improving practices are suggested to the study area and other countries under related conditions.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46429153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Soil Carbon and Nitrogen Stock and Their Spatial Variability Along an Exclosure Chronosequence at Kewet District, Central Dry Lowlands of Ethiopia 埃塞俄比亚中部干旱低地Kewet地区土壤碳氮储量及其围合时间序列空间变异
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221221124546
Fikrey Tesfay, K. Kibret, A. Gebrekirstos, K. Hadgu
{"title":"Soil Carbon and Nitrogen Stock and Their Spatial Variability Along an Exclosure Chronosequence at Kewet District, Central Dry Lowlands of Ethiopia","authors":"Fikrey Tesfay, K. Kibret, A. Gebrekirstos, K. Hadgu","doi":"10.1177/11786221221124546","DOIUrl":"https://doi.org/10.1177/11786221221124546","url":null,"abstract":"Empirical evidence and a better explanation of the effect of exclosures on soil properties are needed to rehabilitate degraded land and properly utilize the restored ecosystem. This study was conducted to determine soil organic carbon (SOC) and total nitrogen (TN) stocks and to map their spatial distribution and aggregate stability along open grazing land, 5, 15, and 20 years exclosure, and three slope positions. To map the spatial distribution of SOC and TN stocks an ordinary kriging interpolation method was applied. The results showed that the age of exclosure had significantly (p < .05) affected SOC and TN stock. Soil organic carbon stock was the highest in the 15-year-old (18.43 Mg ha−1) and lowest (14.22 Mg ha−1) in the 5-year-old exclosures. Similarly, the 15-year-old (1.81 Mg ha−1) and 5-year-old (1.41 Mg ha−1) exclosures had the highest and the lowest TN stock, respectively. Soil organic carbon associated with macroaggregates (>250 µm) and microaggregates (<250 µm) varied significantly (p < .05) between ages of exclosures and adjacent open grazing land. Significantly (p < .05) higher SOC stock (16.99 Mg ha−1) and macroaggregate associated SOC (3.05%) were recorded in the upper slope position as compared to the middle and lower slope positions. Due to the variation in vegetation cover and density and topography of the area, both SOC and TN stock showed high spatial variability across all ages of exclosure and adjacent open grazing land. Despite its inconsistency, the age of exclosure had affected SOC and TN stock, mean weight diameter, water-stable aggregates, and aggregate associated SOC. It is suggested that exclosure as a restoration measure of degraded landscapes can sequester and stock a significant amount of atmospheric CO2. Further study on soil organisms and litterfall is suggested to understand the dynamics of SOC and TN stocks in these exclosures.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41436415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信