S. Shojaei, Pedram Ashofteh, Ngakan Ketut Acwin Dwijendra, A. Melesse, A. Shahvaran, S. Shojaei, Iman Homayoonnezhad
{"title":"Retraction Notice: RETRACTED: “Impacts on Global Temperature During the First Part of 2020 Due to the Reduction in Human Activities by COVID-19”","authors":"S. Shojaei, Pedram Ashofteh, Ngakan Ketut Acwin Dwijendra, A. Melesse, A. Shahvaran, S. Shojaei, Iman Homayoonnezhad","doi":"10.1177/11786221221101901","DOIUrl":null,"url":null,"abstract":"One of the major events transpiring in the 21st century is the unforeseen outbreak due to COVID-19. This pandemic directly altered human activities due to the forced confinement of millions of inhabitants over the world. It is well known that one of the main factors that affect global warming is human activities; however, during the first part of 2020, they were severely reduced by the spread of the coronavirus. This study strives to investigate the possible impact of quarantine initiation worldwide and the linked outcomes on a global scale related to the temperatures since the worthwhile. To achieve this goal, the evaluation of the short-term temperature status at the continental scale was conducted in two particular forms: (i) concerning the short-term comparing the data from 2016, 2017, 2018, and 2019; and, assessing the long-term differences comprising 30 years of data (1981–2010). The data employed in this study were obtained from the respective NASA and Copernicus databases. The temperature maps and temperature differences of different years before the pandemic was compared to the Coronavirus onset (winter and spring) data with the aid of Python programing language. Continental temperature mapping results showed that the temperature difference of the American continent had attained its maximum value in January 2016, and yet, the temperature is observed to be warmer than in 2016. The largest difference in the short-term temperature in terms of comparison to 2020 referred to the months when the maximum quarantine began, that is, February and March, and the temperature was cooler in comparison to the prior years. The long-term mean study denoted that the temperatures throughout the South American continent remained consistent during the first part of 2020 in comparison to the 30-year average data, but temperatures in North America declined from February to April. Similarly, the temperatures in Eurasia in April is observed to be lower compared to the 30 years average in February and March. Accordingly, the average temperature of the Earth has dropped about 0.3°C compared to 2019. We concluded that temperature could show some specific changes and hypothesize that under the COVID-19 pandemic, it could manifest different trends. The next step would be to conduct further analysis to observe at the regional scale if under unforeseen phenomena are or not affecting global warning during the coming years.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":"16 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221221101901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 11
Abstract
One of the major events transpiring in the 21st century is the unforeseen outbreak due to COVID-19. This pandemic directly altered human activities due to the forced confinement of millions of inhabitants over the world. It is well known that one of the main factors that affect global warming is human activities; however, during the first part of 2020, they were severely reduced by the spread of the coronavirus. This study strives to investigate the possible impact of quarantine initiation worldwide and the linked outcomes on a global scale related to the temperatures since the worthwhile. To achieve this goal, the evaluation of the short-term temperature status at the continental scale was conducted in two particular forms: (i) concerning the short-term comparing the data from 2016, 2017, 2018, and 2019; and, assessing the long-term differences comprising 30 years of data (1981–2010). The data employed in this study were obtained from the respective NASA and Copernicus databases. The temperature maps and temperature differences of different years before the pandemic was compared to the Coronavirus onset (winter and spring) data with the aid of Python programing language. Continental temperature mapping results showed that the temperature difference of the American continent had attained its maximum value in January 2016, and yet, the temperature is observed to be warmer than in 2016. The largest difference in the short-term temperature in terms of comparison to 2020 referred to the months when the maximum quarantine began, that is, February and March, and the temperature was cooler in comparison to the prior years. The long-term mean study denoted that the temperatures throughout the South American continent remained consistent during the first part of 2020 in comparison to the 30-year average data, but temperatures in North America declined from February to April. Similarly, the temperatures in Eurasia in April is observed to be lower compared to the 30 years average in February and March. Accordingly, the average temperature of the Earth has dropped about 0.3°C compared to 2019. We concluded that temperature could show some specific changes and hypothesize that under the COVID-19 pandemic, it could manifest different trends. The next step would be to conduct further analysis to observe at the regional scale if under unforeseen phenomena are or not affecting global warning during the coming years.
期刊介绍:
Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.