Extracting the Critical Points of Formaldehyde (HCHO) Emission Model in Hot Desert Climate

IF 3.5 Q2 ENVIRONMENTAL SCIENCES
Chuloh Jung, N. S. Mahmoud
{"title":"Extracting the Critical Points of Formaldehyde (HCHO) Emission Model in Hot Desert Climate","authors":"Chuloh Jung, N. S. Mahmoud","doi":"10.1177/11786221221105082","DOIUrl":null,"url":null,"abstract":"Indoor air pollutants have various emission patterns and are influenced by indoor microclimate, the physical properties of building materials, and types of chemical substances. The difference in these emission patterns affects the prediction via simulation. This paper aims to extract factors that have an important influence on selecting empirical models by examining the emission pattern of formaldehyde (HCHO) from building materials. As a methodology, Small Chamber Pollutant Emission Test was used for six different flooring and wallpaper specimens, and HCHO was sampled and analyzed using HPLC (High-Performance Liquid Chromatography). The result showed that the higher the linear relationship between emission intensity and time, the more appropriate the first-order reduction model, such as flooring-A (R2 = .99), flooring-B (R2 = .94), wallpaper-A (R2 = .99), and wallpaper-C (R2 = .98). The emission pattern of HCHO in building materials is classified into three types: In type I (R2 = .00–.11), the emission of chemical substances reaches the maximum after the start of the experiment and decreases relatively rapidly. Type II (R2 =.00–.41), the emission pattern having the shape of a vertex with a refined concentration ascending and a gentle descending and is a type in which the suitability is significantly high in the concentration descending section, and Type III (R2 = .33–.60), which shows a mild linear increase and decreases trend in the ascending and concentration dropping sections. It is a type that indicates the suitability with the predicted value in a meaningful way in the entire area. Even though many previous studies focused on the concentration descending section in different materials (R2 = .51–.95), it was confirmed that the emission characteristics in the initial concentration ascending section are also critical points for simulation model selection since R2 of ascending section of Type II (.67–.70) and Type III (.77–.93) turned out statistically meaningful except Type I (.02–.25).","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221221105082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 5

Abstract

Indoor air pollutants have various emission patterns and are influenced by indoor microclimate, the physical properties of building materials, and types of chemical substances. The difference in these emission patterns affects the prediction via simulation. This paper aims to extract factors that have an important influence on selecting empirical models by examining the emission pattern of formaldehyde (HCHO) from building materials. As a methodology, Small Chamber Pollutant Emission Test was used for six different flooring and wallpaper specimens, and HCHO was sampled and analyzed using HPLC (High-Performance Liquid Chromatography). The result showed that the higher the linear relationship between emission intensity and time, the more appropriate the first-order reduction model, such as flooring-A (R2 = .99), flooring-B (R2 = .94), wallpaper-A (R2 = .99), and wallpaper-C (R2 = .98). The emission pattern of HCHO in building materials is classified into three types: In type I (R2 = .00–.11), the emission of chemical substances reaches the maximum after the start of the experiment and decreases relatively rapidly. Type II (R2 =.00–.41), the emission pattern having the shape of a vertex with a refined concentration ascending and a gentle descending and is a type in which the suitability is significantly high in the concentration descending section, and Type III (R2 = .33–.60), which shows a mild linear increase and decreases trend in the ascending and concentration dropping sections. It is a type that indicates the suitability with the predicted value in a meaningful way in the entire area. Even though many previous studies focused on the concentration descending section in different materials (R2 = .51–.95), it was confirmed that the emission characteristics in the initial concentration ascending section are also critical points for simulation model selection since R2 of ascending section of Type II (.67–.70) and Type III (.77–.93) turned out statistically meaningful except Type I (.02–.25).
炎热沙漠气候甲醛(HCHO)排放模型的临界点提取
室内空气污染物具有多种排放模式,并受室内小气候、建筑材料的物理性质和化学物质类型的影响。这些发射模式的差异影响通过模拟进行的预测。本文旨在通过考察建筑材料中甲醛(HCHO)的释放规律,提取对经验模型选择有重要影响的因素。采用小室污染物排放测试方法,对6种不同的地板和墙纸样品进行HCHO取样,并采用高效液相色谱法(HPLC)进行分析。结果表明:排放强度与时间的线性关系越高,一阶还原模型越合适,如地板a (R2 = 0.99)、地板b (R2 = 0.94)、壁纸a (R2 = 0.99)、壁纸c (R2 = 0.98);建筑材料中HCHO的排放模式分为三类:第一类(R2 = .00 -.11),化学物质的排放在实验开始后达到最大值,下降相对较快。II型(R2 = 0.00 ~ 0.41)为浓度上升精细、下降平缓的顶点型发射模式,在浓度下降段适宜性显著较高;III型(R2 = 0.33 ~ 0.60)为浓度上升段和浓度下降段适宜性均呈温和的线性增减趋势。它是一种以有意义的方式表示整个区域与预测值的适宜性的类型。尽管以往的许多研究都集中在不同材料的浓度下降段(R2 = 0.51 - 0.95),但可以肯定的是,初始浓度上升段的排放特征也是模拟模型选择的关键,因为除I型(0.02 - 0.25)外,II型(0.67 - 0.70)和III型(0.77 - 0.93)上升段的R2具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Air Soil and Water Research
Air Soil and Water Research ENVIRONMENTAL SCIENCES-
CiteScore
7.80
自引率
5.30%
发文量
27
审稿时长
8 weeks
期刊介绍: Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信