{"title":"Assessment of the Potential for the Formation of a Circular Phosphorus Cycle Using Substance Flow Analysis Based on Reports from Malaysia","authors":"Latifah Abdul Ghani","doi":"10.1177/11786221221089640","DOIUrl":null,"url":null,"abstract":"Sustainability of phosphorus (P) requires detailed and serious key management strategies to control the P flow balance across the environmental systems. During the 1970s, the reserve of phosphate in Malaysia was at its highest level, which led to a decline in resources to the continuous demand increased the import trading of these resources from foreign countries. Consequently, the increased import rate led to imbalanced essential nutrient flow that could impact the national security. The depletion of P reserves initiated in the 1970s triggered the Malaysian government to act quickly by comparing the performance of P accounting indicators according to its primary flow in different ministries. However, the capital injections to Small Medium Industry (SMI) and non-SMI players that increased since the mid-2000s returned the imbalanced P loss to normal. This study utilised extant literature for the development of guidelines in identifying ‘hotspots’ in P flow return, with particular emphasis on national P security achievements. Based on the findings, this study successfully documented the current research patterns of P flow in various systems related to the main P problems, evaluated flow chain requirements and possible impacts of P inputs-outputs, apart from developing solutions to guide policymakers in considering the aspects of substance flow analysis (SFA) approaches in establishing the national P modelling. To reduce the P nutrient leaching down to the levels observed in the early 1990s, a fundamental and better understanding of nutrient management practices coupled with minimised uncertainty of the P catchment scale is required. Monitoring the dispersion of P nutrient can prevent environmental degradation. In conclusion, this review provided a potential approach to achieve new management targets by proposing P load reduction strategies which focuses on the current trend of P demand-production for long-term sustainability of non-renewable resources.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221221089640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainability of phosphorus (P) requires detailed and serious key management strategies to control the P flow balance across the environmental systems. During the 1970s, the reserve of phosphate in Malaysia was at its highest level, which led to a decline in resources to the continuous demand increased the import trading of these resources from foreign countries. Consequently, the increased import rate led to imbalanced essential nutrient flow that could impact the national security. The depletion of P reserves initiated in the 1970s triggered the Malaysian government to act quickly by comparing the performance of P accounting indicators according to its primary flow in different ministries. However, the capital injections to Small Medium Industry (SMI) and non-SMI players that increased since the mid-2000s returned the imbalanced P loss to normal. This study utilised extant literature for the development of guidelines in identifying ‘hotspots’ in P flow return, with particular emphasis on national P security achievements. Based on the findings, this study successfully documented the current research patterns of P flow in various systems related to the main P problems, evaluated flow chain requirements and possible impacts of P inputs-outputs, apart from developing solutions to guide policymakers in considering the aspects of substance flow analysis (SFA) approaches in establishing the national P modelling. To reduce the P nutrient leaching down to the levels observed in the early 1990s, a fundamental and better understanding of nutrient management practices coupled with minimised uncertainty of the P catchment scale is required. Monitoring the dispersion of P nutrient can prevent environmental degradation. In conclusion, this review provided a potential approach to achieve new management targets by proposing P load reduction strategies which focuses on the current trend of P demand-production for long-term sustainability of non-renewable resources.
期刊介绍:
Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.