{"title":"One-Sided and Two-Sided w-of-w Runs-Rules Schemes: An Overall Performance Perspective and the Unified Run-Length Derivations","authors":"S. Shongwe, J. Malela‐Majika, E. Rapoo","doi":"10.1155/2019/6187060","DOIUrl":"https://doi.org/10.1155/2019/6187060","url":null,"abstract":"The one-sided and two-sided Shewhart w-of-w standard and improved runs-rules monitoring schemes to monitor the mean of normally distributed observations from independent and identically distributed (iid) samples are investigated from an overall performance perspective, i.e., the expected weighted run-length (EWRL), for every possible positive integer value of w. The main objective of this work is to use the Markov chain methodology to formulate a theoretical unified approach of designing and evaluating Shewhart w-of-w standard and improved runs-rules for one-sided and two-sided X- schemes in both the zero-state and steady-state modes. Consequently, the main findings of this paper are as follows: (i) the zero-state and steady-state ARL and initial probability vectors of some of the one-sided and two-sided Shewhart w-of-w standard and improved runs-rules schemes are theoretically similar in design; however, their empirical performances are different and (ii) unlike previous studies that use ARL only, we base our recommendations using the zero-state and steady-state EWRL metrics and we observe that the steady-state improved runs-rules schemes tend to yield better performance than the other considered competing schemes, separately, for one-sided and two-sided schemes. Finally, the zero-state and steady-state unified approach run-length equations derived here can easily be used to evaluate other monitoring schemes based on a variety of parametric and nonparametric distributions.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6187060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48360451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Nonuniform Bound to an Independent Test in High Dimensional Data Analysis via Stein’s Method","authors":"N. Rerkruthairat","doi":"10.1155/2019/8641870","DOIUrl":"https://doi.org/10.1155/2019/8641870","url":null,"abstract":"The Berry-Esseen bound for the random variable based on the sum of squared sample correlation coefficients and used to test the complete independence in high diemensions is shown by Stein’s method. Although the Berry-Esseen bound can be applied to all real numbers in R, a nonuniform bound at a real number z usually provides a sharper bound if z is fixed. In this paper, we present the first version of a nonuniform bound on a normal approximation for this random variable with an optimal rate of 1/0.5+|z|·O1/m by using Stein’s method.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8641870","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49374935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julio Cezar Souza Vasconcelos, G. Cordeiro, E. Ortega, E. G. Araújo
{"title":"The New Odd Log-Logistic Generalized Inverse Gaussian Regression Model","authors":"Julio Cezar Souza Vasconcelos, G. Cordeiro, E. Ortega, E. G. Araújo","doi":"10.1155/2019/8575424","DOIUrl":"https://doi.org/10.1155/2019/8575424","url":null,"abstract":"We define a new four-parameter model called the odd log-logistic generalized inverse Gaussian distribution which extends the generalized inverse Gaussian and inverse Gaussian distributions. We obtain some structural properties of the new distribution. We construct an extended regression model based on this distribution with two systematic structures, which can provide more realistic fits to real data than other special regression models. We adopt the method of maximum likelihood to estimate the model parameters. In addition, various simulations are performed for different parameter settings and sample sizes to check the accuracy of the maximum likelihood estimators. We provide a diagnostics analysis based on case-deletion and quantile residuals. Finally, the potentiality of the new regression model to predict price of urban property is illustrated by means of real data.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8575424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41615000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoling Wei, Jimin Li, Chenghao Zhang, Ming Liu, Peng Xiong, Xin-Pan Yuan, Yifei Li, Feng Lin, Xiuling Liu
{"title":"Atrial Fibrillation Detection by the Combination of Recurrence Complex Network and Convolution Neural Network","authors":"Xiaoling Wei, Jimin Li, Chenghao Zhang, Ming Liu, Peng Xiong, Xin-Pan Yuan, Yifei Li, Feng Lin, Xiuling Liu","doi":"10.1155/2019/8057820","DOIUrl":"https://doi.org/10.1155/2019/8057820","url":null,"abstract":"In this paper, R wave peak interval independent atrial fibrillation detection algorithm is proposed based on the analysis of the synchronization feature of the electrocardiogram signal by a deep neural network. Firstly, the synchronization feature of each heartbeat of the electrocardiogram signal is constructed by a Recurrence Complex Network. Then, a convolution neural network is used to detect atrial fibrillation by analyzing the eigenvalues of the Recurrence Complex Network. Finally, a voting algorithm is developed to improve the performance of the beat-wise atrial fibrillation detection. The MIT-BIH atrial fibrillation database is used to evaluate the performance of the proposed method. Experimental results show that the sensitivity, specificity, and accuracy of the algorithm can achieve 94.28%, 94.91%, and 94.59%, respectively. Remarkably, the proposed method was more effective than the traditional algorithms to the problem of individual variation in the atrial fibrillation detection.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8057820","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49252285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the use of min-max combination of biomarkers to maximize the partial area under the ROC curve.","authors":"Hua Ma, Susan Halabi, Aiyi Liu","doi":"10.1155/2019/8953530","DOIUrl":"https://doi.org/10.1155/2019/8953530","url":null,"abstract":"<p><strong>Background: </strong>Evaluation of diagnostic assays and predictive performance of biomarkers based on the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are vital in diagnostic and targeted medicine. The partial area under the curve (pAUC) is an alternative metric focusing on a range of practical and clinical relevance of the diagnostic assay. In this article, we adopt and extend the min-max method to the estimation of the pAUC when multiple continuous scaled biomarkers are available and compare the performances of our proposed approach with existing approaches via simulations.</p><p><strong>Methods: </strong>We conducted extensive simulation studies to investigate the performance of different methods for the combination of biomarkers based on their abilities to produce the largest pAUC estimates. Data were generated from different multivariate distributions with equal and unequal variance-covariance matrices. Different shapes of the ROC curves, false positive fraction ranges, and sample size configurations were considered. We obtained the mean and standard deviation of the pAUC estimates through re-substitution and leave-one-pair-out cross validation.</p><p><strong>Results: </strong>Our results demonstrate that the proposed method provides the largest pAUC estimates under the following three important practical scenarios: (1) multivariate normally distributed data for non-diseased and diseased participants have unequal variance-covariance matrices; or (2) the ROC curves generated from individual biomarker are relative close regardless of the latent normality distributional assumption; or (3) the ROC curves generated from individual biomarker have straight-line shapes.</p><p><strong>Conclusions: </strong>The proposed method is robust and investigators are encouraged to use this approach in the estimation of the pAUC for many practical scenarios.</p>","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"2019 ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8953530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37390203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hassan, M. Elgarhy, Rokaya E. Mohamd, Sharifah Alrajhi
{"title":"On the Alpha Power Transformed Power Lindley Distribution","authors":"A. Hassan, M. Elgarhy, Rokaya E. Mohamd, Sharifah Alrajhi","doi":"10.1155/2019/8024769","DOIUrl":"https://doi.org/10.1155/2019/8024769","url":null,"abstract":"In this paper, we introduce a new generalization of the power Lindley distribution referred to as the alpha power transformed power Lindley (APTPL). The APTPL model provides a better fit than the power Lindley distribution. It includes the alpha power transformed Lindley, power Lindley, Lindley, and gamma as special submodels. Various properties of the APTPL distribution including moments, incomplete moments, quantiles, entropy, and stochastic ordering are obtained. Maximum likelihood, maximum products of spacings, and ordinary and weighted least squares methods of estimation are utilized to obtain the estimators of the population parameters. Extensive numerical simulation is performed to examine and compare the performance of different estimates. Two important data sets are employed to show how the proposed model works in practice.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8024769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46871508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retirement Consumption Puzzle in Malaysia: Evidence from Bayesian Quantile Regression Model","authors":"R. I. Alaudin, N. Ismail, Z. Isa","doi":"10.1155/2019/2723069","DOIUrl":"https://doi.org/10.1155/2019/2723069","url":null,"abstract":"The objective of this study is to use the Bayesian quantile regression for studying the retirement consumption puzzle, which is defined as the drop in consumption upon retirement, using the cross-sectional data of the Malaysian Household Expenditure Survey (HES) 2009/2010. Three different measures of consumption, namely, total expenditure, work-related expenditure, and nonwork-related expenditure, are suggested for studying the retirement consumption puzzle. The results show that the drop in consumption upon retirement is significant and has a regressive distributional effect as indicated by larger drops at lower percentiles and smaller drops at higher percentiles. The smaller drops among higher consumption retirees (or higher income retirees) may imply that they have more savings and/or retirement benefits than the smaller consumption retirees (or lower income retirees). Comparison between the three types of consumption shows that the work-related expenditure has a uniform drop across the distribution. The drop under the nonwork-related expenditure varies across the distribution, implying that it is the source behind the variation of the consumption drop.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2723069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46937192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression","authors":"Prithish Banerjee, Broti Garai, Himel Mallick, PhD, FASA, S. Chowdhury, Saptarshi Chatterjee","doi":"10.1155/2018/2834183","DOIUrl":"https://doi.org/10.1155/2018/2834183","url":null,"abstract":"We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various regularization methods have been developed for variable selection in ZIP models. Among these, EM LASSO is a popular method for simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose a set of EM adaptive LASSO methods using a variety of data-adaptive weights. We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health care demand dataset.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2834183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45166500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detecting Spatial Clusters via a Mixture of Dirichlet Processes","authors":"M. Ray, Jian Kang, Hongmei Zhang","doi":"10.1155/2018/3506794","DOIUrl":"https://doi.org/10.1155/2018/3506794","url":null,"abstract":"We proposed an approach that has the ability to detect spatial clusters with skewed or irregular distributions. A mixture of Dirichlet processes (DP) was used to describe spatial distribution patterns. The effects of different batches of data collection efforts were also modeled with a Dirichlet process. To cluster spatial foci, a birth-death process was applied due to its advantage of easier jumping between different numbers of clusters. Inferences of parameters including clustering were drawn under a Bayesian framework. Simulations were used to demonstrate and assess the method. We applied the method to an fMRI meta-analysis dataset to identify clusters of foci corresponding to different emotions.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/3506794","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42412941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Similarity Statistics for Clusterability Analysis with the Application of Cell Formation Problem","authors":"Yingyu Zhu, Simon Li","doi":"10.1155/2018/1348147","DOIUrl":"https://doi.org/10.1155/2018/1348147","url":null,"abstract":"This paper proposes the use of the statistics of similarity values to evaluate the clusterability or structuredness associated with a cell formation (CF) problem. Typically, the structuredness of a CF solution cannot be known until the CF problem is solved. In this context, this paper investigates the similarity statistics of machine pairs to estimate the potential structuredness of a given CF problem without solving it. One key observation is that a well-structured CF solution matrix has a relatively high percentage of high-similarity machine pairs. Then, histograms are used as a statistical tool to study the statistical distributions of similarity values. This study leads to the development of the U-shape criteria and the criterion based on the Kolmogorov-Smirnov test. Accordingly, a procedure is developed to classify whether an input CF problem can potentially lead to a well-structured or ill-structured CF matrix. In the numerical study, 20 matrices were initially used to determine the threshold values of the criteria, and 40 additional matrices were used to verify the results. Further, these matrix examples show that genetic algorithm cannot effectively improve the well-structured CF solutions (of high grouping efficacy values) that are obtained by hierarchical clustering (as one type of heuristics). This result supports the relevance of similarity statistics to preexamine an input CF problem instance and suggest a proper solution approach for problem solving.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1348147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47655848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}