{"title":"关于零膨胀Poisson回归的自适应LASSO的一个注记","authors":"Prithish Banerjee, Broti Garai, Himel Mallick, PhD, FASA, S. Chowdhury, Saptarshi Chatterjee","doi":"10.1155/2018/2834183","DOIUrl":null,"url":null,"abstract":"We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various regularization methods have been developed for variable selection in ZIP models. Among these, EM LASSO is a popular method for simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose a set of EM adaptive LASSO methods using a variety of data-adaptive weights. We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health care demand dataset.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2834183","citationCount":"6","resultStr":"{\"title\":\"A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression\",\"authors\":\"Prithish Banerjee, Broti Garai, Himel Mallick, PhD, FASA, S. Chowdhury, Saptarshi Chatterjee\",\"doi\":\"10.1155/2018/2834183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various regularization methods have been developed for variable selection in ZIP models. Among these, EM LASSO is a popular method for simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose a set of EM adaptive LASSO methods using a variety of data-adaptive weights. We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health care demand dataset.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/2834183\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/2834183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2834183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression
We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various regularization methods have been developed for variable selection in ZIP models. Among these, EM LASSO is a popular method for simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection inconsistency. To remedy these problems, we propose a set of EM adaptive LASSO methods using a variety of data-adaptive weights. We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health care demand dataset.