Atrial Fibrillation Detection by the Combination of Recurrence Complex Network and Convolution Neural Network

IF 1 Q3 STATISTICS & PROBABILITY
Xiaoling Wei, Jimin Li, Chenghao Zhang, Ming Liu, Peng Xiong, Xin-Pan Yuan, Yifei Li, Feng Lin, Xiuling Liu
{"title":"Atrial Fibrillation Detection by the Combination of Recurrence Complex Network and Convolution Neural Network","authors":"Xiaoling Wei, Jimin Li, Chenghao Zhang, Ming Liu, Peng Xiong, Xin-Pan Yuan, Yifei Li, Feng Lin, Xiuling Liu","doi":"10.1155/2019/8057820","DOIUrl":null,"url":null,"abstract":"In this paper, R wave peak interval independent atrial fibrillation detection algorithm is proposed based on the analysis of the synchronization feature of the electrocardiogram signal by a deep neural network. Firstly, the synchronization feature of each heartbeat of the electrocardiogram signal is constructed by a Recurrence Complex Network. Then, a convolution neural network is used to detect atrial fibrillation by analyzing the eigenvalues of the Recurrence Complex Network. Finally, a voting algorithm is developed to improve the performance of the beat-wise atrial fibrillation detection. The MIT-BIH atrial fibrillation database is used to evaluate the performance of the proposed method. Experimental results show that the sensitivity, specificity, and accuracy of the algorithm can achieve 94.28%, 94.91%, and 94.59%, respectively. Remarkably, the proposed method was more effective than the traditional algorithms to the problem of individual variation in the atrial fibrillation detection.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8057820","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8057820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, R wave peak interval independent atrial fibrillation detection algorithm is proposed based on the analysis of the synchronization feature of the electrocardiogram signal by a deep neural network. Firstly, the synchronization feature of each heartbeat of the electrocardiogram signal is constructed by a Recurrence Complex Network. Then, a convolution neural network is used to detect atrial fibrillation by analyzing the eigenvalues of the Recurrence Complex Network. Finally, a voting algorithm is developed to improve the performance of the beat-wise atrial fibrillation detection. The MIT-BIH atrial fibrillation database is used to evaluate the performance of the proposed method. Experimental results show that the sensitivity, specificity, and accuracy of the algorithm can achieve 94.28%, 94.91%, and 94.59%, respectively. Remarkably, the proposed method was more effective than the traditional algorithms to the problem of individual variation in the atrial fibrillation detection.
递归复杂网络与卷积神经网络联合检测心房颤动
本文在利用深度神经网络分析心电图信号同步特征的基础上,提出了一种与R波峰间隔无关的心房颤动检测算法。首先,通过递归复杂网络构造心电图信号的每个心跳的同步特征。然后,通过分析递归复杂网络的特征值,使用卷积神经网络来检测心房颤动。最后,开发了一种投票算法来提高逐拍心房颤动检测的性能。MIT-BIH心房颤动数据库用于评估所提出方法的性能。实验结果表明,该算法的灵敏度、特异性和准确性分别达到94.28%、94.91%和94.59%。值得注意的是,对于心房颤动检测中的个体变异问题,该方法比传统算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信