A. Hassan, M. Elgarhy, Rokaya E. Mohamd, Sharifah Alrajhi
{"title":"On the Alpha Power Transformed Power Lindley Distribution","authors":"A. Hassan, M. Elgarhy, Rokaya E. Mohamd, Sharifah Alrajhi","doi":"10.1155/2019/8024769","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new generalization of the power Lindley distribution referred to as the alpha power transformed power Lindley (APTPL). The APTPL model provides a better fit than the power Lindley distribution. It includes the alpha power transformed Lindley, power Lindley, Lindley, and gamma as special submodels. Various properties of the APTPL distribution including moments, incomplete moments, quantiles, entropy, and stochastic ordering are obtained. Maximum likelihood, maximum products of spacings, and ordinary and weighted least squares methods of estimation are utilized to obtain the estimators of the population parameters. Extensive numerical simulation is performed to examine and compare the performance of different estimates. Two important data sets are employed to show how the proposed model works in practice.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8024769","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8024769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 31
Abstract
In this paper, we introduce a new generalization of the power Lindley distribution referred to as the alpha power transformed power Lindley (APTPL). The APTPL model provides a better fit than the power Lindley distribution. It includes the alpha power transformed Lindley, power Lindley, Lindley, and gamma as special submodels. Various properties of the APTPL distribution including moments, incomplete moments, quantiles, entropy, and stochastic ordering are obtained. Maximum likelihood, maximum products of spacings, and ordinary and weighted least squares methods of estimation are utilized to obtain the estimators of the population parameters. Extensive numerical simulation is performed to examine and compare the performance of different estimates. Two important data sets are employed to show how the proposed model works in practice.