{"title":"用Stein方法分析高维数据中独立检验的非均匀界","authors":"N. Rerkruthairat","doi":"10.1155/2019/8641870","DOIUrl":null,"url":null,"abstract":"The Berry-Esseen bound for the random variable based on the sum of squared sample correlation coefficients and used to test the complete independence in high diemensions is shown by Stein’s method. Although the Berry-Esseen bound can be applied to all real numbers in R, a nonuniform bound at a real number z usually provides a sharper bound if z is fixed. In this paper, we present the first version of a nonuniform bound on a normal approximation for this random variable with an optimal rate of 1/0.5+|z|·O1/m by using Stein’s method.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8641870","citationCount":"1","resultStr":"{\"title\":\"A Nonuniform Bound to an Independent Test in High Dimensional Data Analysis via Stein’s Method\",\"authors\":\"N. Rerkruthairat\",\"doi\":\"10.1155/2019/8641870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Berry-Esseen bound for the random variable based on the sum of squared sample correlation coefficients and used to test the complete independence in high diemensions is shown by Stein’s method. Although the Berry-Esseen bound can be applied to all real numbers in R, a nonuniform bound at a real number z usually provides a sharper bound if z is fixed. In this paper, we present the first version of a nonuniform bound on a normal approximation for this random variable with an optimal rate of 1/0.5+|z|·O1/m by using Stein’s method.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/8641870\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/8641870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8641870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Nonuniform Bound to an Independent Test in High Dimensional Data Analysis via Stein’s Method
The Berry-Esseen bound for the random variable based on the sum of squared sample correlation coefficients and used to test the complete independence in high diemensions is shown by Stein’s method. Although the Berry-Esseen bound can be applied to all real numbers in R, a nonuniform bound at a real number z usually provides a sharper bound if z is fixed. In this paper, we present the first version of a nonuniform bound on a normal approximation for this random variable with an optimal rate of 1/0.5+|z|·O1/m by using Stein’s method.