A Nonuniform Bound to an Independent Test in High Dimensional Data Analysis via Stein’s Method

IF 1 Q3 STATISTICS & PROBABILITY
N. Rerkruthairat
{"title":"A Nonuniform Bound to an Independent Test in High Dimensional Data Analysis via Stein’s Method","authors":"N. Rerkruthairat","doi":"10.1155/2019/8641870","DOIUrl":null,"url":null,"abstract":"The Berry-Esseen bound for the random variable based on the sum of squared sample correlation coefficients and used to test the complete independence in high diemensions is shown by Stein’s method. Although the Berry-Esseen bound can be applied to all real numbers in R, a nonuniform bound at a real number z usually provides a sharper bound if z is fixed. In this paper, we present the first version of a nonuniform bound on a normal approximation for this random variable with an optimal rate of 1/0.5+|z|·O1/m by using Stein’s method.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8641870","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8641870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

The Berry-Esseen bound for the random variable based on the sum of squared sample correlation coefficients and used to test the complete independence in high diemensions is shown by Stein’s method. Although the Berry-Esseen bound can be applied to all real numbers in R, a nonuniform bound at a real number z usually provides a sharper bound if z is fixed. In this paper, we present the first version of a nonuniform bound on a normal approximation for this random variable with an optimal rate of 1/0.5+|z|·O1/m by using Stein’s method.
用Stein方法分析高维数据中独立检验的非均匀界
Stein方法给出了基于样本相关系数平方和的随机变量的Berry-Essen界,该界用于检验高维中的完全独立性。尽管Berry-Esseen界可以应用于R中的所有实数,但如果z是固定的,则实数z处的非均匀界通常提供更尖锐的界。本文用Stein方法给出了最优速率为1/0.5+|z|·O1/m的随机变量在正态近似上的非均匀界的第一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信