{"title":"On the balanced Voronoï formula for GL$_N$","authors":"T. Wong","doi":"10.7169/facm/1810","DOIUrl":"https://doi.org/10.7169/facm/1810","url":null,"abstract":"S.D. Miller and F. Zhou have proved a balanced Voronoi summation formula for GL$_N$ over $mathbb Q$, which allows one to control the dimensions of the Kloosterman sums appearing on either side of the Voronoi formula. In this note, we prove a balanced Voronoi formula over an arbitrary number field, starting with the Voronoi summation formula of A. Ichino and N. Templier over number fields, allowing one to extend recent results on spectral reciprocity laws to number fields, in special cases.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48848203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Principalisation abélienne des groupes de classes logarithmiques","authors":"J. Jaulent","doi":"10.7169/facm/1765","DOIUrl":"https://doi.org/10.7169/facm/1765","url":null,"abstract":"Résumé. Nous transposons aux ℓ -groupes de classes logarithmiques attachées à un corps de nombres les résultats sur la principalisation abélienne des groupes de classes de rayons modérées. En particulier nous montrons que pour toute extension K/ k de corps de nombres complètement décomposée en au moins une place à l’infini, il existe sous la conjecture de Gross-Kuz’min dans K une infinité de ℓ -extensions abéliennes F/ k pour lesquelles le sous-groupe relatif e C ℓ K/ k = Ker( e C ℓ K → e C ℓ k ) du ℓ -groupe des classes logarithmiques de K capitule dans le compositum KF . Abstract. We extend to logarithmic class groups the results on abelian principalization of tame ray class groups of a number field obtained in a previous article. As a consequence, for any extension K/ k of number fields which satisfies the Gross-Kuz’min conjecture for the prime ℓ and where at least one of the infinite places completely splits, we prove that there exists infinitely many abelian ℓ -extensions F/ k such that the relative subgroup e C ℓ K/ k = Ker( e C ℓ K → e C ℓ k ) of the ℓ -group of logarithmic classes of K capitulates in the compositum FK .","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41811644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Loxodromic Eisenstein series for cofinite Kleinian groups","authors":"Y. Irie","doi":"10.7169/FACM/1781","DOIUrl":"https://doi.org/10.7169/FACM/1781","url":null,"abstract":"We introduce an Eisenstein series associated to a loxodromic element of cofinite Kleinian groups, namely the loxodromic Eisenstein series, and study its fundamental properties. It is the analogue of the hyperbolic Eisenstein series for Fuchsian groups of the first kind. We prove the convergence and the differential equation associated to the Laplace-Beltrami operator. We also prove the precise spectral expansion associated to the Laplace-Beltrami operator. Furthermore, we derive the analytic continuation with the location of the possible poles and their residues from the spectral expansion.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49278162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Borne de hauteur semi-effective pour le problème de Mordell-Lang dans un tore","authors":"Jérôme Von Buhren","doi":"10.7169/FACM/1779","DOIUrl":"https://doi.org/10.7169/FACM/1779","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43513477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the race between primes with an odd versus an even sum of the last $k$ binary digits","authors":"Youness Lamzouri, Bruno Martin","doi":"10.7169/facm/1687","DOIUrl":"https://doi.org/10.7169/facm/1687","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45275014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the $p$-divisibility of class numbers of cyclotomic function fields","authors":"D. Shiomi","doi":"10.7169/FACM/1757","DOIUrl":"https://doi.org/10.7169/FACM/1757","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41290510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of the convolution sum $sum_{al+bm=n} sigma(l) sigma(m)$ for $(a,b)=(1,48),(3,16),(1,54),(2,27)$","authors":"S. Alaca, Yavuz Kesicioğlu","doi":"10.7169/FACM/1742","DOIUrl":"https://doi.org/10.7169/FACM/1742","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.7169/FACM/1742","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44163918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Algèbres de Jordan sans J-diviseurs topologiques généralisés de zéro","authors":"Abdelaziz Tajmouati, A. Zinedine","doi":"10.7169/FACM/1744","DOIUrl":"https://doi.org/10.7169/FACM/1744","url":null,"abstract":"","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.7169/FACM/1744","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41636889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carleson embeddings for Hardy-Orlicz and Bergman-Orlicz spaces of the upper-half plane","authors":"Jean Marcel T. Dje, B. Sehba","doi":"10.7169/FACM/1877","DOIUrl":"https://doi.org/10.7169/FACM/1877","url":null,"abstract":"In this paper we characterize off-diagonal Carleson embeddings for both Hardy-Orlicz spaces and Bergman-Orlicz spaces of the upper-half plane. We use these results to obtain embedding relations and pointwise multipliers between these spaces.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47050293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Half-integral weight modular forms and real quadratic $p$-rational fields","authors":"J. Assim, Zakariae Bouazzaoui","doi":"10.7169/facm/1851","DOIUrl":"https://doi.org/10.7169/facm/1851","url":null,"abstract":"Using half-integral weight modular forms we give a criterion for the existence of real quadratic $p$-rational fields. For $p=5$ we prove the existence of infinitely many real quadratic $p$-rational fields.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44998611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}