{"title":"A constraint for twist equivalence of cusp forms on GL$(n)$","authors":"D. Ramakrishnan, Liyang Yang","doi":"10.7169/FACM/1913","DOIUrl":null,"url":null,"abstract":"This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\\pi_1$ and $\\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\\chi$ such that $\\pi_1\\otimes\\chi\\simeq\\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\\mid N_1N_2.$ If at every finite place $v,$ $\\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/FACM/1913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\pi_1$ and $\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\chi$ such that $\pi_1\otimes\chi\simeq\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\mid N_1N_2.$ If at every finite place $v,$ $\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$