{"title":"半积分权模形式与实二次$p$-有理域","authors":"J. Assim, Zakariae Bouazzaoui","doi":"10.7169/facm/1851","DOIUrl":null,"url":null,"abstract":"Using half-integral weight modular forms we give a criterion for the existence of real quadratic $p$-rational fields. For $p=5$ we prove the existence of infinitely many real quadratic $p$-rational fields.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Half-integral weight modular forms and real quadratic $p$-rational fields\",\"authors\":\"J. Assim, Zakariae Bouazzaoui\",\"doi\":\"10.7169/facm/1851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using half-integral weight modular forms we give a criterion for the existence of real quadratic $p$-rational fields. For $p=5$ we prove the existence of infinitely many real quadratic $p$-rational fields.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Half-integral weight modular forms and real quadratic $p$-rational fields
Using half-integral weight modular forms we give a criterion for the existence of real quadratic $p$-rational fields. For $p=5$ we prove the existence of infinitely many real quadratic $p$-rational fields.