超几何级数的完整性性质

Pub Date : 2019-05-08 DOI:10.7169/FACM/1843
A. Adolphson, S. Sperber
{"title":"超几何级数的完整性性质","authors":"A. Adolphson, S. Sperber","doi":"10.7169/FACM/1843","DOIUrl":null,"url":null,"abstract":"Let $A$ be a set of $N$ vectors in ${\\mathbb Z}^n$ and let $v$ be a vector in ${\\mathbb C}^N$ that has minimal negative support for $A$. Such a vector $v$ gives rise to a formal series solution of the $A$-hypergeometric system with parameter $\\beta=Av$. If $v$ lies in ${\\mathbb Q}^n$, then this series has rational coefficients. Let $p$ be a prime number. We characterize those $v$ whose coordinates are rational, $p$-integral, and lie in the closed interval $[-1,0]$ for which the corresponding normalized series solution has $p$-integral coefficients. From this we deduce further integrality results for hypergeometric series.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On integrality properties of hypergeometric series\",\"authors\":\"A. Adolphson, S. Sperber\",\"doi\":\"10.7169/FACM/1843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be a set of $N$ vectors in ${\\\\mathbb Z}^n$ and let $v$ be a vector in ${\\\\mathbb C}^N$ that has minimal negative support for $A$. Such a vector $v$ gives rise to a formal series solution of the $A$-hypergeometric system with parameter $\\\\beta=Av$. If $v$ lies in ${\\\\mathbb Q}^n$, then this series has rational coefficients. Let $p$ be a prime number. We characterize those $v$ whose coordinates are rational, $p$-integral, and lie in the closed interval $[-1,0]$ for which the corresponding normalized series solution has $p$-integral coefficients. From this we deduce further integrality results for hypergeometric series.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/FACM/1843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/FACM/1843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$A$是${\mathbb Z}^ N$中$N$向量的集合,设$v$是${\mathbb C}^N$中对$A$具有最小负支持的向量。这样的向量$v$给出了参数$\beta=Av$的$ a $-超几何系统的形式级数解。如果$v$在${\mathbb Q}^n$中,则该级数具有有理系数。设p是质数。我们刻画了那些坐标是有理的,p$-积分的,并且在闭合区间$[-1,0]$中,对应的归一化级数解具有p$-积分系数的$v$。由此进一步导出了超几何级数的完整性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On integrality properties of hypergeometric series
Let $A$ be a set of $N$ vectors in ${\mathbb Z}^n$ and let $v$ be a vector in ${\mathbb C}^N$ that has minimal negative support for $A$. Such a vector $v$ gives rise to a formal series solution of the $A$-hypergeometric system with parameter $\beta=Av$. If $v$ lies in ${\mathbb Q}^n$, then this series has rational coefficients. Let $p$ be a prime number. We characterize those $v$ whose coordinates are rational, $p$-integral, and lie in the closed interval $[-1,0]$ for which the corresponding normalized series solution has $p$-integral coefficients. From this we deduce further integrality results for hypergeometric series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信