GL$(n)$上尖形扭转等价的约束

Pub Date : 2019-06-03 DOI:10.7169/FACM/1913
D. Ramakrishnan, Liyang Yang
{"title":"GL$(n)$上尖形扭转等价的约束","authors":"D. Ramakrishnan, Liyang Yang","doi":"10.7169/FACM/1913","DOIUrl":null,"url":null,"abstract":"This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\\pi_1$ and $\\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\\chi$ such that $\\pi_1\\otimes\\chi\\simeq\\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\\mid N_1N_2.$ If at every finite place $v,$ $\\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A constraint for twist equivalence of cusp forms on GL$(n)$\",\"authors\":\"D. Ramakrishnan, Liyang Yang\",\"doi\":\"10.7169/FACM/1913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\\\\pi_1$ and $\\\\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\\\\chi$ such that $\\\\pi_1\\\\otimes\\\\chi\\\\simeq\\\\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\\\\mid N_1N_2.$ If at every finite place $v,$ $\\\\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/FACM/1913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/FACM/1913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文回答并概括了Kaisa Matomaki的一个问题。我们给出了两个逆自同构表示 $\pi_1$ 和 $\pi_2$ 的 $GL_n$ 在一个数字域上 $F$ 各自导体的 $N_1,$ $N_2,$ 每个角色 $\chi$ 这样 $\pi_1\otimes\chi\simeq\pi_2$ 导体 $Q,$ 满足界: $Q^n\mid N_1N_2.$ 如果在每一个有限的位置 $v,$ $\pi_{1,v}$ 无论什么时候它的分支都是离散级数 $Q^n$ 除以最小公倍数 $[N_1, N_2].$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A constraint for twist equivalence of cusp forms on GL$(n)$
This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\pi_1$ and $\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\chi$ such that $\pi_1\otimes\chi\simeq\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\mid N_1N_2.$ If at every finite place $v,$ $\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信