{"title":"GL$(n)$上尖形扭转等价的约束","authors":"D. Ramakrishnan, Liyang Yang","doi":"10.7169/FACM/1913","DOIUrl":null,"url":null,"abstract":"This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\\pi_1$ and $\\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\\chi$ such that $\\pi_1\\otimes\\chi\\simeq\\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\\mid N_1N_2.$ If at every finite place $v,$ $\\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A constraint for twist equivalence of cusp forms on GL$(n)$\",\"authors\":\"D. Ramakrishnan, Liyang Yang\",\"doi\":\"10.7169/FACM/1913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\\\\pi_1$ and $\\\\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\\\\chi$ such that $\\\\pi_1\\\\otimes\\\\chi\\\\simeq\\\\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\\\\mid N_1N_2.$ If at every finite place $v,$ $\\\\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/FACM/1913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/FACM/1913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A constraint for twist equivalence of cusp forms on GL$(n)$
This note answers, and generalizes, a question of Kaisa Matomaki. We show that give two cuspidal automorphic representations $\pi_1$ and $\pi_2$ of $GL_n$ over a number field $F$ of respective conductor $N_1,$ $N_2,$ every character $\chi$ such that $\pi_1\otimes\chi\simeq\pi_2$ of conductor $Q,$ satisfies the bound: $Q^n\mid N_1N_2.$ If at every finite place $v,$ $\pi_{1,v}$ is a discrete series whenever it is ramified, then $Q^n$ divides the least common multiple $[N_1, N_2].$