{"title":"关于扩展Selberg类中阶$1$函数的线性扭曲","authors":"Giamila Zaghloul","doi":"10.7169/facm/1801","DOIUrl":null,"url":null,"abstract":"Given a degree 1 function $F\\in\\mathcal{S}^{\\sharp}$ and a real number $\\alpha$, we consider the linear twist $F(s,\\alpha)$, proving that it satisfies a functional equation reflecting $s$ into $1-s$, which can be seen as a Hurwitz-Lerch type of functional equation. We also derive some results on the distribution of the zeros of the linear twist.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the linear twist of degree $1$ functions in the extended Selberg class\",\"authors\":\"Giamila Zaghloul\",\"doi\":\"10.7169/facm/1801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a degree 1 function $F\\\\in\\\\mathcal{S}^{\\\\sharp}$ and a real number $\\\\alpha$, we consider the linear twist $F(s,\\\\alpha)$, proving that it satisfies a functional equation reflecting $s$ into $1-s$, which can be seen as a Hurwitz-Lerch type of functional equation. We also derive some results on the distribution of the zeros of the linear twist.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
给定一个1次函数$F\in\mathcal{S}^{\sharp}$和一个实数$\alpha$,我们考虑线性扭曲$F(S,\alpha)$,证明它满足一个反映$ S $为$1- S $的泛函方程,这可以看作是一个Hurwitz-Lerch型泛函方程。我们还得到了关于线性扭转的零点分布的一些结果。
On the linear twist of degree $1$ functions in the extended Selberg class
Given a degree 1 function $F\in\mathcal{S}^{\sharp}$ and a real number $\alpha$, we consider the linear twist $F(s,\alpha)$, proving that it satisfies a functional equation reflecting $s$ into $1-s$, which can be seen as a Hurwitz-Lerch type of functional equation. We also derive some results on the distribution of the zeros of the linear twist.