关于扩展Selberg类中阶$1$函数的线性扭曲

Pub Date : 2019-03-14 DOI:10.7169/facm/1801
Giamila Zaghloul
{"title":"关于扩展Selberg类中阶$1$函数的线性扭曲","authors":"Giamila Zaghloul","doi":"10.7169/facm/1801","DOIUrl":null,"url":null,"abstract":"Given a degree 1 function $F\\in\\mathcal{S}^{\\sharp}$ and a real number $\\alpha$, we consider the linear twist $F(s,\\alpha)$, proving that it satisfies a functional equation reflecting $s$ into $1-s$, which can be seen as a Hurwitz-Lerch type of functional equation. We also derive some results on the distribution of the zeros of the linear twist.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the linear twist of degree $1$ functions in the extended Selberg class\",\"authors\":\"Giamila Zaghloul\",\"doi\":\"10.7169/facm/1801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a degree 1 function $F\\\\in\\\\mathcal{S}^{\\\\sharp}$ and a real number $\\\\alpha$, we consider the linear twist $F(s,\\\\alpha)$, proving that it satisfies a functional equation reflecting $s$ into $1-s$, which can be seen as a Hurwitz-Lerch type of functional equation. We also derive some results on the distribution of the zeros of the linear twist.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定一个1次函数$F\in\mathcal{S}^{\sharp}$和一个实数$\alpha$,我们考虑线性扭曲$F(S,\alpha)$,证明它满足一个反映$ S $为$1- S $的泛函方程,这可以看作是一个Hurwitz-Lerch型泛函方程。我们还得到了关于线性扭转的零点分布的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the linear twist of degree $1$ functions in the extended Selberg class
Given a degree 1 function $F\in\mathcal{S}^{\sharp}$ and a real number $\alpha$, we consider the linear twist $F(s,\alpha)$, proving that it satisfies a functional equation reflecting $s$ into $1-s$, which can be seen as a Hurwitz-Lerch type of functional equation. We also derive some results on the distribution of the zeros of the linear twist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信