Advances in Operator Theory最新文献

筛选
英文 中文
Paths of means for positive operators with strongly unitarily equivalent supports 具有强单位等价支持的正算子的手段路径
IF 0.8
Advances in Operator Theory Pub Date : 2024-05-23 DOI: 10.1007/s43036-024-00344-7
Jun Ichi Fujii
{"title":"Paths of means for positive operators with strongly unitarily equivalent supports","authors":"Jun Ichi Fujii","doi":"10.1007/s43036-024-00344-7","DOIUrl":"10.1007/s43036-024-00344-7","url":null,"abstract":"<div><p>Based on the Bonnabel–Sepulchre geometric mean for fixed rank matrices, we introduced paths of matrix means corresponding to the Kubo–Ando operator ones. We also observed that our mean includes the Batzies–Hüper–Machado–Silva Leite geometric means for fixed rank projection matrices. But these means are restricted to real ones and moreover it seems that it is not easy to extend them to operators on a complex (infinite dimensional) Hilbert space since these means were based on geometries for finite dimensional real spaces. In this paper, we introduce the general paths of means on a complex Hilbert space corresponding to those of the Kubo–Ando ones based on the infinite dimensional complex Grassmann geodesic in the sense of Andruchow.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New refinements of some classical inequalities via Young’s inequality 通过杨氏不等式对一些经典不等式的新完善
IF 0.8
Advances in Operator Theory Pub Date : 2024-05-18 DOI: 10.1007/s43036-024-00347-4
Mohamed Amine Ighachane, Fuad Kittaneh, Zakaria Taki
{"title":"New refinements of some classical inequalities via Young’s inequality","authors":"Mohamed Amine Ighachane,&nbsp;Fuad Kittaneh,&nbsp;Zakaria Taki","doi":"10.1007/s43036-024-00347-4","DOIUrl":"10.1007/s43036-024-00347-4","url":null,"abstract":"<div><p>The main objective of this paper is to use a new refinement of Young’s inequality to obtain two new scalar inequalities. As an application, we derive several new improvements of some well-known inequalities, which include the generalized mixed Schwarz inequality, numerical radius inequalities, Jensen inequalities and others. For example, for every <span>(T,S in {mathcal {B(H)}})</span>, <span>(alpha in (0,1))</span> and <span>(x, y in {mathcal {H}})</span>, we prove that </p><div><div><span>$$begin{aligned}{} &amp; {} left( 1+ L(alpha )log ^2left( frac{|langle TS x, yrangle | }{r(S)Vert f(|T|) xVert left| gleft( left| T^*right| right) yright| }right) right) |langle TSx, yrangle | {} &amp; {} quad le r(S)Vert f(|T|) xVert left| gleft( left| T^*right| right) yright| , end{aligned}$$</span></div></div><p>where <i>L</i> is a positive 1-periodic function and <i>r</i>(<i>S</i>) is the spectral radius of <i>S</i>, which gives an improvement of the well-known generalized mixed Schwarz inequality: </p><div><div><span>$$begin{aligned} left| langle TSx,y rangle right| le r(S)Vert f(|T|) xVert left| gleft( left| T^*right| right) yright| , end{aligned}$$</span></div></div><p>where <span>(|T| S=S^*|T|)</span> and <i>f</i>, <i>g</i> are non-negative continuous functions defined on <span>([0, infty ))</span> satisfying that <span>(f(t) g(t)=t,(t ge 0))</span>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141125719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a class of obstacle problem via Young measure in generalized Sobolev space 通过广义索波列夫空间中的杨度量论一类障碍问题
IF 0.8
Advances in Operator Theory Pub Date : 2024-05-17 DOI: 10.1007/s43036-024-00349-2
Mouad Allalou, Mohamed El Ouaarabi, Hasnae El Hammar, Abderrahmane Raji
{"title":"On a class of obstacle problem via Young measure in generalized Sobolev space","authors":"Mouad Allalou,&nbsp;Mohamed El Ouaarabi,&nbsp;Hasnae El Hammar,&nbsp;Abderrahmane Raji","doi":"10.1007/s43036-024-00349-2","DOIUrl":"10.1007/s43036-024-00349-2","url":null,"abstract":"<div><p>This paper deals with the existence and uniqueness of weak solution for a class of obstacle problem of the form </p><div><div><span>$$begin{aligned} {left{ begin{array}{ll} &amp;{}displaystyle int _{Omega }mathcal {V}(x,Dw):D(vartheta -w)mathrm {~d}x+displaystyle int _{Omega }leftlangle wvert wvert ^{p(x)-2},vartheta - wrightrangle mathrm {~d}x &amp;{} quad ge displaystyle int _{Omega }mathcal {U}(x,w)(vartheta -w)mathrm {~d}x, ; &amp;{} vartheta in Im _{Lambda , h}, end{array}right. } end{aligned}$$</span></div></div><p>where <span>(Im _{Lambda , h})</span> is a convex set defined below. By using the Young measure theory and Kinderlehrer and Stampacchia Theorem, we prove the existence and uniqueness result of the considered problem in the framework of generalized Sobolev space.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The (C^*)-algebra of the Mautner group 毛特纳群的 C^*$$ 代数
IF 0.8
Advances in Operator Theory Pub Date : 2024-05-14 DOI: 10.1007/s43036-024-00348-3
Hedi Regeiba, Jean Ludwig
{"title":"The (C^*)-algebra of the Mautner group","authors":"Hedi Regeiba,&nbsp;Jean Ludwig","doi":"10.1007/s43036-024-00348-3","DOIUrl":"10.1007/s43036-024-00348-3","url":null,"abstract":"<div><p>Let <span>(M_theta =({mathbb {R}} &lt; imes {mathbb {C}}^2, underset{theta }{cdot }) (theta )</span> an irrational number), be the Mautner group. We describe the <span>(C^*)</span>-algebra of <span>(M_theta )</span> as a subalgebra of <span>(C_0({mathbb {C}}^2,{mathcal {B}}(L^{2}({mathbb {R}}))) )</span></p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00348-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qualitative uncertainty principle for continuous modulated shearlet transform 连续调制小剪切变换的定性不确定性原理
IF 0.8
Advances in Operator Theory Pub Date : 2024-05-10 DOI: 10.1007/s43036-024-00346-5
Piyush Bansal, Ajay Kumar, Ashish Bansal
{"title":"Qualitative uncertainty principle for continuous modulated shearlet transform","authors":"Piyush Bansal,&nbsp;Ajay Kumar,&nbsp;Ashish Bansal","doi":"10.1007/s43036-024-00346-5","DOIUrl":"10.1007/s43036-024-00346-5","url":null,"abstract":"<div><p>We prove the qualitative uncertainty principle for the continuous modulated shearlet transform on several classes of groups including Abelian groups, compact extensions of Abelian groups and Heisenberg group. As particular cases, one obtains the qualitative uncertainty principles for the Gabor transform, the wavelet transform and the shearlet transform.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On sum of weighted differentiation composition operators from Bergman spaces with admissible weights to Zygmund type spaces 论从具有可容许权重的伯格曼空间到齐格蒙类型空间的加权微分组成算子之和
IF 0.8
Advances in Operator Theory Pub Date : 2024-04-30 DOI: 10.1007/s43036-024-00345-6
Ajay K. Sharma, Sanjay Kumar, Mehak Sharma, Bhanu Sharma, Mohammad Mursaleen
{"title":"On sum of weighted differentiation composition operators from Bergman spaces with admissible weights to Zygmund type spaces","authors":"Ajay K. Sharma,&nbsp;Sanjay Kumar,&nbsp;Mehak Sharma,&nbsp;Bhanu Sharma,&nbsp;Mohammad Mursaleen","doi":"10.1007/s43036-024-00345-6","DOIUrl":"10.1007/s43036-024-00345-6","url":null,"abstract":"<div><p>Let <span>({mathbb D})</span> be the open unit disk in the complex plane. We characterize the boundedness and compactness of the sum of weighted differentiation composition operators </p><div><div><span>$$begin{aligned} (T_{overrightarrow{psi }, varphi } f)(z)=sum _{j=0}^{n}(D^j_{psi _j, varphi }f)(z)=sum _{j=0}^npsi _{j}(z) f^{(j)} (varphi (z)),quad zin {mathbb D}, end{aligned}$$</span></div></div><p>where <span>(nin {mathbb N}_0)</span>, <span>(psi _j)</span>, <span>(jin overline{0,n})</span>, are holomorphic functions on <span>({mathbb D})</span>, and <span>(varphi )</span>, a holomorphic self-maps of <span>({mathbb D})</span>, acting from Bergman spaces with admissible weights to Zygmund type spaces.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extrapolation to two-weighted Herz spaces with three variable exponents 外推至具有三个可变指数的双加权赫兹空间
IF 0.8
Advances in Operator Theory Pub Date : 2024-04-29 DOI: 10.1007/s43036-024-00333-w
Mitsuo Izuki, Takahiro Noi, Yoshihiro Sawano
{"title":"Extrapolation to two-weighted Herz spaces with three variable exponents","authors":"Mitsuo Izuki,&nbsp;Takahiro Noi,&nbsp;Yoshihiro Sawano","doi":"10.1007/s43036-024-00333-w","DOIUrl":"10.1007/s43036-024-00333-w","url":null,"abstract":"<div><p>On the basis of the boundedness of singular integral operators, we investigate the boundedness of various linear operators acting on two-weighted Herz spaces with three variable exponents. We obtain the extrapolation theorem as well as the boundedness property of bilinear singular operators. First, we are interested in the case where the triangle inequality is available, and then we develop a theory to extend our results in full generality.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Birkhoff–James classification of norm’s properties 规范特性的伯克霍夫-詹姆斯分类法
IF 0.8
Advances in Operator Theory Pub Date : 2024-04-26 DOI: 10.1007/s43036-024-00321-0
Alexander Guterman, Bojan Kuzma, Sushil Singla, Svetlana Zhilina
{"title":"Birkhoff–James classification of norm’s properties","authors":"Alexander Guterman,&nbsp;Bojan Kuzma,&nbsp;Sushil Singla,&nbsp;Svetlana Zhilina","doi":"10.1007/s43036-024-00321-0","DOIUrl":"10.1007/s43036-024-00321-0","url":null,"abstract":"<div><p>For an arbitrary normed space <span>(mathcal {X})</span> over a field <span>(mathbb {F}in { mathbb {R}, mathbb {C}},)</span> we define the directed graph <span>(Gamma (mathcal {X}))</span> induced by Birkhoff–James orthogonality on the projective space <span>(mathbb P(mathcal {X}),)</span> and also its nonprojective counterpart <span>(Gamma _0(mathcal {X}).)</span> We show that, in finite-dimensional normed spaces, <span>(Gamma (mathcal {X}))</span> carries all the information about the dimension, smooth points, and norm’s maximal faces. It also allows to determine whether the norm is a supremum norm or not, and thus classifies finite-dimensional abelian <span>(C^*)</span>-algebras among other normed spaces. We further establish the necessary and sufficient conditions under which the graph <span>(Gamma _0({mathcal {R}}))</span> of a (real or complex) Radon plane <span>({mathcal {R}})</span> is isomorphic to the graph <span>(Gamma _0(mathbb {F}^2, {Vert cdot Vert }_2))</span> of the two-dimensional Hilbert space and construct examples of such nonsmooth Radon planes.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00321-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Daugavet’s equation and Jordan elementary operators 道加韦特方程和约旦基本算子
IF 0.8
Advances in Operator Theory Pub Date : 2024-04-24 DOI: 10.1007/s43036-024-00342-9
Zakaria Taki, Mohamed Chraibi Kaadoud, Messaoud Guesba
{"title":"Daugavet’s equation and Jordan elementary operators","authors":"Zakaria Taki,&nbsp;Mohamed Chraibi Kaadoud,&nbsp;Messaoud Guesba","doi":"10.1007/s43036-024-00342-9","DOIUrl":"10.1007/s43036-024-00342-9","url":null,"abstract":"<div><p>The aim of this paper is to investigate the Daugavet equation for a Jordan elementary operator. More precisely, we study the equation </p><div><div><span>$$begin{aligned} Vert I+U_{mathfrak {J},A,B} Vert =1+2 Vert A Vert Vert B Vert , end{aligned}$$</span></div></div><p>where <i>I</i> stands for the identity operator, <i>A</i> and <i>B</i> are two bounded operators acting on a complex Hilbert space <span>(mathcal {H})</span>, <span>(mathfrak {J})</span> is a norm ideal of operators on <span>(mathcal {H})</span>, and <span>(U_{mathfrak {J}, A, B})</span> is the restriction of the Jordan operator <span>(U_{A,B})</span> to <span>(mathfrak {J})</span>. In the particular case where <span>(mathfrak {J}=mathfrak {C}_{2}(mathcal {H}))</span> is the ideal of Hilbert–Schmidt operators, we give necessary and sufficient conditions under which the above equation holds.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140665024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mosco convergence of set-valued supermartingale 集合值超马太尔的莫斯科收敛性
IF 0.8
Advances in Operator Theory Pub Date : 2024-04-23 DOI: 10.1007/s43036-024-00340-x
M’hamed El-Louh, Fatima Ezzaki
{"title":"Mosco convergence of set-valued supermartingale","authors":"M’hamed El-Louh,&nbsp;Fatima Ezzaki","doi":"10.1007/s43036-024-00340-x","DOIUrl":"10.1007/s43036-024-00340-x","url":null,"abstract":"<div><p>The existence of regular martingale selectors for multivalued supermartingales with unbounded values in a separable Banach space <i>Y</i> is proved. In addition, new convergence results for set-valued supermartingales in the Mosco sense are presented. At the end of this paper, the equivalence between some properties of unbounded set-valued supermartingales and the convergence of these random sets in the Mosco sense is established.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信