Some remarks on the mutually commutative idempotents

IF 0.8 Q2 MATHEMATICS
Wei Luo, Chunhong Fu, Qingxiang Xu
{"title":"Some remarks on the mutually commutative idempotents","authors":"Wei Luo,&nbsp;Chunhong Fu,&nbsp;Qingxiang Xu","doi":"10.1007/s43036-024-00339-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals mainly with the idempotency of an operator or a matrix <i>T</i> given by <span>\\(T=c_1 \\Pi _1 +c_2 \\Pi _2+\\cdots +c_n\\Pi _n,\\)</span> where <i>n</i> is an arbitrary positive integer, <span>\\(\\{\\Pi _{1},\\Pi _{2},\\ldots ,\\Pi _{n}\\}\\)</span> is a collection of mutually commutative idempotents, and <span>\\(c_1,c_2,\\ldots ,c_n\\)</span> are complex numbers. Some previous results in the cases of <span>\\(n=2\\)</span> and <span>\\(n=3\\)</span> are generalized, and meanwhile some new characterizations of the idempotency of <i>T</i> are obtained.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00339-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals mainly with the idempotency of an operator or a matrix T given by \(T=c_1 \Pi _1 +c_2 \Pi _2+\cdots +c_n\Pi _n,\) where n is an arbitrary positive integer, \(\{\Pi _{1},\Pi _{2},\ldots ,\Pi _{n}\}\) is a collection of mutually commutative idempotents, and \(c_1,c_2,\ldots ,c_n\) are complex numbers. Some previous results in the cases of \(n=2\) and \(n=3\) are generalized, and meanwhile some new characterizations of the idempotency of T are obtained.

关于互换幂级数的几点评论
本文主要讨论一个算子或矩阵 T 的幂等性,其公式为 \(T=c_1 \Pi _1 +c_2 \Pi _2+\cdots +c_n\Pi _n,\),其中 n 是任意正整数、\(\{Pi_{1},\Pi_{2},\ldots ,\Pi_{n}\})是相互交换的幂的集合,而(c_1,c_2,\ldots ,c_n\)是复数。对之前关于 \(n=2\) 和 \(n=3\) 的一些结果进行了归纳,同时得到了 T 的幂等性的一些新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信