Existence result of bounded variation solution for a perturbed \(1-\)Laplacian and \(1-\)biharmonic problem with vanishing potentials

IF 0.8 Q2 MATHEMATICS
Mahsa Amoie, Mohsen Alimohammady
{"title":"Existence result of bounded variation solution for a perturbed \\(1-\\)Laplacian and \\(1-\\)biharmonic problem with vanishing potentials","authors":"Mahsa Amoie,&nbsp;Mohsen Alimohammady","doi":"10.1007/s43036-024-00351-8","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on the investigation of a quasilinear elliptic problem in the entire space <span>\\(\\mathbb {R}^N\\)</span>, which involves the 1-Laplacian and 1-biharmonic operators, as well as potentials that can vanish at infinity. This research is conducted within the space of functions with bounded variation. The main result is proven using a version of the mountain pass theorem that does not require the Palais-Smale condition.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00351-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work focuses on the investigation of a quasilinear elliptic problem in the entire space \(\mathbb {R}^N\), which involves the 1-Laplacian and 1-biharmonic operators, as well as potentials that can vanish at infinity. This research is conducted within the space of functions with bounded variation. The main result is proven using a version of the mountain pass theorem that does not require the Palais-Smale condition.

具有消失势的扰动 $$1-$Laplacian 和 $$1-$ 双谐波问题的有界变化解的存在性结果
这项工作的重点是研究整个空间 \(\mathbb {R}^N\) 中的准线性椭圆问题,该问题涉及 1 拉普拉斯算子和 1 双谐波算子,以及可以在无穷远处消失的势。这项研究是在有界变函数空间内进行的。主要结果是利用不需要 Palais-Smale 条件的山口定理版本证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信