Existence of solutions to a strongly nonlinear elliptic coupled system of finite order

IF 0.8 Q2 MATHEMATICS
Manar Lahrache, Mohamed Rhoudaf, Hajar Talbi
{"title":"Existence of solutions to a strongly nonlinear elliptic coupled system of finite order","authors":"Manar Lahrache,&nbsp;Mohamed Rhoudaf,&nbsp;Hajar Talbi","doi":"10.1007/s43036-024-00350-9","DOIUrl":null,"url":null,"abstract":"<div><p>The existence of a capacity solution to the strongly nonlinear degenerate problem, namely, <span>\\(H(\\theta )+g(x,\\theta )=\\sigma (\\theta )|\\nabla \\psi |^{2}, {\\text {div}}(\\sigma (\\theta ) \\nabla \\psi )=0\\)</span> in <span>\\(\\Omega \\)</span> where <span>\\(g(x,\\theta )\\)</span> is a lower order term satisfies the sign condition but without any restriction on its growth and the operator <i>H</i> is of the form </p><div><div><span>$$\\begin{aligned} H (\\theta )=\\sum _{|\\nu |=0}^{r}(-1)^{|\\nu |} D^\\nu \\left( h_\\nu \\left( x, D^\\gamma \\theta \\right) \\right) , \\quad |\\gamma | \\le |\\nu |, \\end{aligned}$$</span></div></div><p>is proved in the framework of Sobolev space of finite order.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00350-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of a capacity solution to the strongly nonlinear degenerate problem, namely, \(H(\theta )+g(x,\theta )=\sigma (\theta )|\nabla \psi |^{2}, {\text {div}}(\sigma (\theta ) \nabla \psi )=0\) in \(\Omega \) where \(g(x,\theta )\) is a lower order term satisfies the sign condition but without any restriction on its growth and the operator H is of the form

$$\begin{aligned} H (\theta )=\sum _{|\nu |=0}^{r}(-1)^{|\nu |} D^\nu \left( h_\nu \left( x, D^\gamma \theta \right) \right) , \quad |\gamma | \le |\nu |, \end{aligned}$$

is proved in the framework of Sobolev space of finite order.

强非线性有限阶椭圆耦合系统解的存在性
强非线性退化问题存在一个容量解,即 \(H(\theta )+g(x,\theta )=\sigma (\theta )|\nabla \psi |^{2}, {\text {div}}(\sigma (\theta )\nabla \psi )=0\) in \(\Omega\),其中 \(g(x. \theta )\) 是满足符号条件的低阶项,但不限制其增长,且算子 H 的形式为 $$\begin{aligned} H (\theta )+g(x,\theta )=\sigma (\theta )|^{2}、\)是一个低阶项,满足符号条件,但对其增长没有任何限制,算子H的形式是 $$\begin{aligned} H (\theta )=\sum _{|\nu |=0}^{r}(-1)^{|\nu |}D^\nu \left( h_\nu \left( x, D^\gamma \theta \right) \right) , \quad |\gamma | \le |\nu |, \end{aligned}$$是在有限阶的索波列夫空间框架下证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信