通过广义索波列夫空间中的杨度量论一类障碍问题

IF 0.8 Q2 MATHEMATICS
Mouad Allalou, Mohamed El Ouaarabi, Hasnae El Hammar, Abderrahmane Raji
{"title":"通过广义索波列夫空间中的杨度量论一类障碍问题","authors":"Mouad Allalou,&nbsp;Mohamed El Ouaarabi,&nbsp;Hasnae El Hammar,&nbsp;Abderrahmane Raji","doi":"10.1007/s43036-024-00349-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the existence and uniqueness of weak solution for a class of obstacle problem of the form </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} &amp;{}\\displaystyle \\int _{\\Omega }\\mathcal {V}(x,Dw):D(\\vartheta -w)\\mathrm {~d}x+\\displaystyle \\int _{\\Omega }\\left\\langle w\\vert w\\vert ^{p(x)-2},\\vartheta - w\\right\\rangle \\mathrm {~d}x\\\\ &amp;{} \\quad \\ge \\displaystyle \\int _{\\Omega }\\mathcal {U}(x,w)(\\vartheta -w)\\mathrm {~d}x, \\\\ \\;\\\\ &amp;{} \\vartheta \\in \\Im _{\\Lambda , h}, \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(\\Im _{\\Lambda , h}\\)</span> is a convex set defined below. By using the Young measure theory and Kinderlehrer and Stampacchia Theorem, we prove the existence and uniqueness result of the considered problem in the framework of generalized Sobolev space.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of obstacle problem via Young measure in generalized Sobolev space\",\"authors\":\"Mouad Allalou,&nbsp;Mohamed El Ouaarabi,&nbsp;Hasnae El Hammar,&nbsp;Abderrahmane Raji\",\"doi\":\"10.1007/s43036-024-00349-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the existence and uniqueness of weak solution for a class of obstacle problem of the form </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} &amp;{}\\\\displaystyle \\\\int _{\\\\Omega }\\\\mathcal {V}(x,Dw):D(\\\\vartheta -w)\\\\mathrm {~d}x+\\\\displaystyle \\\\int _{\\\\Omega }\\\\left\\\\langle w\\\\vert w\\\\vert ^{p(x)-2},\\\\vartheta - w\\\\right\\\\rangle \\\\mathrm {~d}x\\\\\\\\ &amp;{} \\\\quad \\\\ge \\\\displaystyle \\\\int _{\\\\Omega }\\\\mathcal {U}(x,w)(\\\\vartheta -w)\\\\mathrm {~d}x, \\\\\\\\ \\\\;\\\\\\\\ &amp;{} \\\\vartheta \\\\in \\\\Im _{\\\\Lambda , h}, \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\Im _{\\\\Lambda , h}\\\\)</span> is a convex set defined below. By using the Young measure theory and Kinderlehrer and Stampacchia Theorem, we prove the existence and uniqueness result of the considered problem in the framework of generalized Sobolev space.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00349-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00349-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类形式为 $$begin{aligned} {\left\{ \begin{array}{ll} &{}\displaystyle \int _{\Omega }\mathcal {V}(x,Dw) 的障碍问题的弱解的存在性和唯一性:D(\vartheta -w)\mathrm {~d}x+\displaystyle \int _{\Omega }left\langle w\vert w\vert ^{p(x)-2},\vartheta - w\right\rangle \mathrm {~d}x\ &{}\quad \ge \displaystyle \int _{\Omega }\mathcal {U}(x,w)(\vartheta -w)\mathrm {~d}x, \\;\ &{}\in (Im _{Lambda , h}), (end{array}/right.}\end{aligned}$ 其中 \(\Im _{\Lambda , h}\) 是一个凸集,定义如下。通过使用 Young 度量理论和 Kinderlehrer 与 Stampacchia 定理,我们证明了所考虑问题在广义 Sobolev 空间框架下的存在性和唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of obstacle problem via Young measure in generalized Sobolev space

This paper deals with the existence and uniqueness of weak solution for a class of obstacle problem of the form

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}\displaystyle \int _{\Omega }\mathcal {V}(x,Dw):D(\vartheta -w)\mathrm {~d}x+\displaystyle \int _{\Omega }\left\langle w\vert w\vert ^{p(x)-2},\vartheta - w\right\rangle \mathrm {~d}x\\ &{} \quad \ge \displaystyle \int _{\Omega }\mathcal {U}(x,w)(\vartheta -w)\mathrm {~d}x, \\ \;\\ &{} \vartheta \in \Im _{\Lambda , h}, \end{array}\right. } \end{aligned}$$

where \(\Im _{\Lambda , h}\) is a convex set defined below. By using the Young measure theory and Kinderlehrer and Stampacchia Theorem, we prove the existence and uniqueness result of the considered problem in the framework of generalized Sobolev space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信