{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(24)00264-0","DOIUrl":"10.1016/S0968-0004(24)00264-0","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 12","pages":"Page e1"},"PeriodicalIF":11.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functionalized DNA secondary structures and nanostructures for specific protein modifications","authors":"Bauke Albada","doi":"10.1016/j.tibs.2024.09.003","DOIUrl":"10.1016/j.tibs.2024.09.003","url":null,"abstract":"<div><div>The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 12","pages":"Pages 1124-1135"},"PeriodicalIF":11.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A two-way relationship between histone acetylation and metabolism","authors":"Evelina Charidemou , Antonis Kirmizis","doi":"10.1016/j.tibs.2024.10.005","DOIUrl":"10.1016/j.tibs.2024.10.005","url":null,"abstract":"<div><div>A link between epigenetics and metabolism was initially recognized because the cellular metabolic state is communicated to the genome through the concentration of intermediary metabolites that are cofactors of chromatin-modifying enzymes. Recently, an additional interaction was postulated due to the capacity of the epigenome to store substantial amounts of metabolites that could become available again to cellular metabolite pools. Here, we focus on histone acetylation and review recent evidence illustrating this reciprocal relationship: in one direction, signaling-induced acetyl-coenzyme A (acetyl-CoA) changes influence histone acetylation levels to regulate genomic functions, and in the opposite direction histone acetylation acts as an acetate reservoir to directly affect downstream acetyl-CoA-mediated metabolism. This review highlights the current understanding, experimental challenges, and future perspectives of this bidirectional interplay.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 12","pages":"Pages 1046-1062"},"PeriodicalIF":11.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/S0968-0004(24)00261-5","DOIUrl":"10.1016/S0968-0004(24)00261-5","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 12","pages":"Pages i-ii"},"PeriodicalIF":11.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clues into Wnt cell surface signalosomes and its biogenesis","authors":"Philip Schmiege , Xiaochun Li","doi":"10.1016/j.tibs.2024.09.007","DOIUrl":"10.1016/j.tibs.2024.09.007","url":null,"abstract":"<div><div>Wnt morphogens induce signaling via binding their extracellular receptors. Here, we discuss several recent structural studies showing how Wnts engage their receptors frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), how Cachd1 has been shown as an alternative initiator of Wnt signaling, and how lipidated Wnt may be produced and secreted from the cell.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 12","pages":"Pages 1042-1045"},"PeriodicalIF":11.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kawthar F. Alashoor , Jian You Wang , Salim Al-Babili
{"title":"The role of hydrolysis in perceiving and degrading the plant hormone strigolactones","authors":"Kawthar F. Alashoor , Jian You Wang , Salim Al-Babili","doi":"10.1016/j.tibs.2024.09.006","DOIUrl":"10.1016/j.tibs.2024.09.006","url":null,"abstract":"<div><div>Strigolactones (SLs) perform versatile functions in plants. The different members of the α/β-hydrolase superfamily bind and hydrolyze SLs at varying rates to transduce their signal or maintain SL homeostasis. Recent work by <span><span>Palayam <em>et al.</em></span><svg><path></path></svg></span> on SL-degrading carboxylesterases (CXEs) uncovers structural elements that determine the mechanism, efficiency of SL hydrolysis, and biological functions.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 12","pages":"Pages 1039-1041"},"PeriodicalIF":11.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(24)00241-X","DOIUrl":"10.1016/S0968-0004(24)00241-X","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 11","pages":"Page e1"},"PeriodicalIF":11.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two hearts beat as one: the debate over RAS dimers continues","authors":"Andrew G. Stephen","doi":"10.1016/j.tibs.2024.09.005","DOIUrl":"10.1016/j.tibs.2024.09.005","url":null,"abstract":"<div><div>A recent report by <span><span>Yun <em>et al.</em></span><svg><path></path></svg></span> describes the detection of RAS dimers using intact mass spectrometry and investigates the role that membrane lipids, nucleotide state, and binding partners have in their formation.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 11","pages":"Pages 933-935"},"PeriodicalIF":11.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing sustainable biotechnology through protein engineering","authors":"Amelia R. Bergeson , Hal S. Alper","doi":"10.1016/j.tibs.2024.07.006","DOIUrl":"10.1016/j.tibs.2024.07.006","url":null,"abstract":"<div><div>The push for industrial sustainability benefits from the use of enzymes as a replacement for traditional chemistry. Biological catalysts, especially those that have been engineered for increased activity, stability, or novel function, and are often greener than alternative chemical approaches. This Review highlights the role of engineered enzymes (and identifies directions for further engineering efforts) in the application areas of greenhouse gas sequestration, fuel production, bioremediation, and degradation of plastic wastes.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 11","pages":"Pages 955-968"},"PeriodicalIF":11.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/S0968-0004(24)00238-X","DOIUrl":"10.1016/S0968-0004(24)00238-X","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 11","pages":"Pages i-ii"},"PeriodicalIF":11.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}