迈向代谢反应的RNA催化:核酶催化烷基转移的进展。

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
David M.J. Lilley , Lin Huang
{"title":"迈向代谢反应的RNA催化:核酶催化烷基转移的进展。","authors":"David M.J. Lilley ,&nbsp;Lin Huang","doi":"10.1016/j.tibs.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>The RNA world hypothesis proposes that the early stages of the emergence of life on Earth comprised primitive cells in which RNA acted both to store genetic information and catalyze chemical reactions as RNA enzymes (ribozymes). Most contemporary ribozymes catalyze phosphoryl transfer reactions, but early ribozymes would have been required to catalyze a broader range of metabolic interconversions. None has been found in modern cells, yet ribozymes have been generated by <em>in vitro</em> evolution to catalyze several different chemical reactions, providing proof of principle of RNA-catalyzed metabolism. Recently, several different ribozymes that accelerate methyl or alkyl transfer have been isolated. As we discuss here, one of these, MTR1, uses a remarkably sophisticated catalytic mechanism involving nucleobase-mediated general acid catalysis.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 5","pages":"Pages 417-424"},"PeriodicalIF":11.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA catalysis moving towards metabolic reactions: progress with ribozyme catalyzed alkyl transfer\",\"authors\":\"David M.J. Lilley ,&nbsp;Lin Huang\",\"doi\":\"10.1016/j.tibs.2025.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The RNA world hypothesis proposes that the early stages of the emergence of life on Earth comprised primitive cells in which RNA acted both to store genetic information and catalyze chemical reactions as RNA enzymes (ribozymes). Most contemporary ribozymes catalyze phosphoryl transfer reactions, but early ribozymes would have been required to catalyze a broader range of metabolic interconversions. None has been found in modern cells, yet ribozymes have been generated by <em>in vitro</em> evolution to catalyze several different chemical reactions, providing proof of principle of RNA-catalyzed metabolism. Recently, several different ribozymes that accelerate methyl or alkyl transfer have been isolated. As we discuss here, one of these, MTR1, uses a remarkably sophisticated catalytic mechanism involving nucleobase-mediated general acid catalysis.</div></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"50 5\",\"pages\":\"Pages 417-424\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096800042500026X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096800042500026X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RNA世界假说提出,地球上生命出现的早期阶段由原始细胞组成,其中RNA作为RNA酶(核糖酶)既储存遗传信息,又催化化学反应。大多数当代核酶催化磷酰转移反应,但早期的核酶需要催化更广泛的代谢相互转化。在现代细胞中没有发现这种酶,但在体外进化中已经产生了核酶来催化几种不同的化学反应,为rna催化代谢的原理提供了证据。最近,已经分离出几种不同的加速甲基或烷基转移的核酶。正如我们在这里讨论的,其中之一,MTR1,使用一种非常复杂的催化机制,包括核碱基介导的一般酸催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RNA catalysis moving towards metabolic reactions: progress with ribozyme catalyzed alkyl transfer
The RNA world hypothesis proposes that the early stages of the emergence of life on Earth comprised primitive cells in which RNA acted both to store genetic information and catalyze chemical reactions as RNA enzymes (ribozymes). Most contemporary ribozymes catalyze phosphoryl transfer reactions, but early ribozymes would have been required to catalyze a broader range of metabolic interconversions. None has been found in modern cells, yet ribozymes have been generated by in vitro evolution to catalyze several different chemical reactions, providing proof of principle of RNA-catalyzed metabolism. Recently, several different ribozymes that accelerate methyl or alkyl transfer have been isolated. As we discuss here, one of these, MTR1, uses a remarkably sophisticated catalytic mechanism involving nucleobase-mediated general acid catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信