{"title":"Appearance of active regions at the end of solar cycle 24 and at the beginning of cycle 25","authors":"V. Grigoryev, L. Ermakova, A. Khlystova","doi":"10.12737/stp-84202202","DOIUrl":"https://doi.org/10.12737/stp-84202202","url":null,"abstract":"The spatial-temporal picture of appearance of active regions and the relationship of their appearance with the structure and development of a large-scale magnetic field were studied during the transition from solar cycle 24 to 25. During this period, solar activity is low, and therefore the dynamics of a large-scale magnetic field in the appearance of new active regions is most noticeable. We have used SDO/HMI data on the longitudinal magnetic field to determine the time and heliographic coordinates of the origin of an active region, as well as daily WSO maps (Wilcox Solar Observatory) to compare with the structure of the large-scale magnetic field. We have obtained the following results. During the transition from one cycle to another, new active regions appeared in half of the cases in the polarity inversion line of the large-scale magnetic field, and almost exclusively at the Hale boundaries in the corresponding hemispheres and solar cycles. In other cases, the places of appearance were unipolar regions of the large-scale magnetic field without a clear advantage in the location of the field regions according to the Hale law. The formation of active regions is preceded or accompanied by changes in the structure of the large-scale magnetic field. At the same time, in the fine structure of the magnetic field in the photosphere we can observe an increase in the magnetic field network on a spatial scale of the size of supergranules and larger, as well as the appearance of small regions of a new magnetic field of both polarities. The appearing active regions were concentrated in two narrow longitudinal zones that covered both hemispheres of the Sun. The new cycle began in the same longitudinal zones, where the activity of the old cycle decayed.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46686407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Chelpanov, S. Anfinogentov, D. Kostarev, O. Mikhailova, A. Rubtsov, A. Chelpanov
{"title":"Review and comparison of MHD wave characteristics at the Sun and in Earth’s magnetosphere","authors":"M. Chelpanov, S. Anfinogentov, D. Kostarev, O. Mikhailova, A. Rubtsov, A. Chelpanov","doi":"10.12737/stp-84202201","DOIUrl":"https://doi.org/10.12737/stp-84202201","url":null,"abstract":"Magnetohydrodynamic (MHD) waves play a crucial role in the plasma processes of stellar atmospheres and planetary magnetospheres. Wave phenomena in both media are known to have similarities and unique traits typical of each system. \u0000MHD waves and related phenomena in magnetospheric and solar physics are studied largely independently of each other, despite the similarity in properties of these media and the common physical foundations of wave generation and propagation. A unified approach to studying MHD waves in the Sun and Earth's magnetosphere opens up prospects for further progress in these two fields. \u0000The review examines the current state of research into MHD waves in the Sun’s atmosphere and Earth's magnetosphere. It outlines the main features of the wave propagation media: their structure, scales, and typical parameters. We describe the main theoretical models applied to wave behavior studies; discuss their advantages and limitations; compare characteristics of MHD waves in the Sun’s atmosphere and Earth’s magnetosphere; and review observation methods and tools to obtain information on waves in various media.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44924630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mikhalev, A. Beletsky, V. Lebedev, V. Khakhinov
{"title":"Optical effects of running spacecraft engines in the lower thermosphere","authors":"A. Mikhalev, A. Beletsky, V. Lebedev, V. Khakhinov","doi":"10.12737/stp-84202207","DOIUrl":"https://doi.org/10.12737/stp-84202207","url":null,"abstract":"This paper provides a brief overview on optical effects during operation of spacecraft (SC) onboard engines in the lower thermosphere according to observational data from the ISTP SB RAS Geophyisical Observatory. We present the results of detected disturbances in the night airglow during operation of SC vernier engines in the F2-region of the ionosphere in the “Radar–Progress” space experiment. With weights of combustion products of ≤10 kg injected by SC vernier engines, the atmospheric emission of [OI] 630.0 nm atomic oxygen is enhanced. We also show optical effects from the launches and passages of heavy launch vehicles “Energiya” from the Skif-DM spacecraft on May 15, 1987 and “Proton-M” from the Yamal-601 spacecraft on May 30, 2019 from Baikonur in the zone far from the launch site. We explore the possibility of enhanced [OI] 557.7 nm atmospheric emission due to chemical modification of the ionosphere in the E-region during the flight of the Energiya space system.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47174637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Podlesny, E. Devyatova, Andrey Saunkin, R. Vasilyev
{"title":"Comparing methods to estimate cloud cover over the Baikal Natural Territory in December 2020.","authors":"S. Podlesny, E. Devyatova, Andrey Saunkin, R. Vasilyev","doi":"10.12737/stp-84202210","DOIUrl":"https://doi.org/10.12737/stp-84202210","url":null,"abstract":"The paper addresses the issue of how much cloud cover data obtained using satellite and model-interpolation techniques are suitable for monitoring the transparency of the atmosphere and determining conditions for airglow observations at a local geophysical observatory. For this purpose, we compared the temporal dynamics of cloud cover from ECMWF’s ERA5 reanalysis and NOAA satellites with the night atmosphere transparency according to a digital camera. We considered the dynamics of the addressed parameters at the Geophysical Observatory of the Institute of Solar-Terrestrial Physics, located in the Baikal Natural Territory near the village of Tory (Republic of Buryatia, Russia), during December 2020. The comparative analysis showed a generally good agreement between cloud cover data from ECMWF’s ERA5 climate reanalysis and those observed with the camera. Disadvantages are the lack of information on rapid variations in cloud cover in the reanalysis and positive and negative delays in the dynamics of cloud fields that last about two hours. Due to irregular satellite data, large time gaps between passes and difficulties in estimating cloud cover at night, we could not come to reliable conclusions concerning the applicability of satellite data.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48900669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Kopecek, F. Buchholz, V. Mihailetchi, J. Libal, J. Lossen, Ning Chen, H. Chu, C. Peter, Tudor Timofte, A. Halm, Yonggang Guo, X. Qu, Xiang Wu, Jiaqing Gao, Peng Dong
{"title":"Interdigitated Back Contact Technology as Final Evolution for Industrial Crystalline Single-Junction Silicon Solar Cell","authors":"R. Kopecek, F. Buchholz, V. Mihailetchi, J. Libal, J. Lossen, Ning Chen, H. Chu, C. Peter, Tudor Timofte, A. Halm, Yonggang Guo, X. Qu, Xiang Wu, Jiaqing Gao, Peng Dong","doi":"10.3390/solar3010001","DOIUrl":"https://doi.org/10.3390/solar3010001","url":null,"abstract":"We present our own Interdigitated Back Contact (IBC) technology, which was developed at ISC Konstanz and implemented in mass production with and at SPIC Solar in Xining, China, with production efficiencies of over 24%. To our knowledge, this is the highest efficiency achieved in the mass production of crystalline silicon solar cells without the use of charge-carrier-selective contacts. With an adapted screen-printing sequence, it is possible to achieve open-circuit voltages of over 700 mV. Advanced module technology has been developed for the IBC interconnection, which is ultimately simpler than for conventional double-sided contacted solar cells. In the next step, we will realize low-cost charge-carrier-selective contacts for both polarities in a simple sequence using processes developed and patented at ISC Konstanz. With the industrialisation of this process, it will be possible to achieve efficiencies well above 25% at low cost. We will show that with the replacement of silver screen-printed contacts by copper or aluminium metallisation, future IBC technology will be the end product for the PV market, as it is the best performing c-Si technology, leading to the lowest cost of electricity, even in utility-scale applications.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"45 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84941280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos O. Pinzon, Nahuel Martínez, G. Casas, F. Alvira, Nicole Denon, Gastón Brusasco, H. M. Medina Chanduví, A. Gil Rebaza, M. Cappelletti
{"title":"Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation","authors":"Carlos O. Pinzon, Nahuel Martínez, G. Casas, F. Alvira, Nicole Denon, Gastón Brusasco, H. M. Medina Chanduví, A. Gil Rebaza, M. Cappelletti","doi":"10.3390/solar2040033","DOIUrl":"https://doi.org/10.3390/solar2040033","url":null,"abstract":"Perovskite solar cells (PSCs) have substantially increased their power conversion efficiency (PCE) to more than 25% in recent years. However, the instability of these devices is still a strong obstacle for their commercial applications. Recently, all-inorganic PSCs based on CsPbI3 and CsPbI2Br as the perovskite layer have shown enhanced long-term stability, which makes them potential candidates for commercialization. Currently, all-inorganic PSCs with inverted p-i-n configuration have not yet reached the high efficiency achieved in the normal n-i-p structure. However, the inverted p-i-n architecture has recently drawn attention of researchers because it is more suitable to prepare tandem solar cells. In this work, a theoretical study of inverted p-i-n all-inorganic PSCs based on CsPbI3 and CsPbI2Br as the perovskite layer was carried out using SCAPS-1D software (ver. 3.3.09). The performance of different architectures of PSC was examined and compared by means of numerical simulations using various inorganic materials as the hole transport layer (HTL) and the electron transport layer (ETL). The results reveal that CuI and ZnO are the most suitable as HTL and ETL, respectively. In addition, the performance of the devices was significantly improved by optimizing the hole mobility in CuI as well as the thickness, doping density, and defect density in the absorber layer. Maximum efficiencies of 26.5% and 20.6% were obtained under optimized conditions for the inverted all-inorganic CsPbI3- and CsPbI2Br-based PSCs, respectively. These results indicate that further improvements in the performance of such devices are still possible.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"16 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86004432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Nur-E-Alam, M. K. Basher, Iftekharuzzaman, Kazi Zehad Mostofa, Mohammad Aminul Islam, A. Haque, Narottam Das
{"title":"Rooftop PV or Hybrid Systems and Retrofitted Low-E Coated Windows for Energywise and Self-Sustainable School Buildings in Bangladesh","authors":"M. Nur-E-Alam, M. K. Basher, Iftekharuzzaman, Kazi Zehad Mostofa, Mohammad Aminul Islam, A. Haque, Narottam Das","doi":"10.3390/solar2040032","DOIUrl":"https://doi.org/10.3390/solar2040032","url":null,"abstract":"The electricity crisis is a common issue in Bangladesh; however, recently the electricity scenario has been getting worse due to various reasons including power generation and distribution all over the country. Meanwhile, the large number of people requires a huge amount of energy which is not possible to be met by the national grid due to the limited power generation from different plants. Among all renewable energy sources, the solar photovoltaics (PV) system is the best choice as a generation source, either off-grid or with a grid-tied connection, to reduce the pressure on the national grid. In Bangladesh, there are more than 175,000 schools, and it is possible to generate a huge amount of renewable (solar) power to supply all the schools by using rooftop PV systems. We propose a new approach that combines solar energy harvesting and savings to make the schools self-sufficient and energywise. We performed a Hybrid Optimization Model for Multiple Energy Resources (HOMER) pro simulation and find that it was possible to generate approximately 200 megawatts (MW) of power. We conducted a feasibility study on generating power from rooftop PV systems on school buildings and reduced the power consumption using retrofitted thin-film-coated glass by around 16–20% per day depending on the school size, which can help the national power grid system by either making all the schools off-grid or grid-connected to supply power to the national grid. In addition, we perform a HelioScope simulation to investigate the maximum upscaling of PV sizing for the rooftops of school buildings in Bangladesh to realize how to make each school a mini solar power station in the future. The HelioScope simulation performance showed that it was possible to generate approximately 96,993 kWh per year from one school building.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"22 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86664591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dyes from the Southern Lands: An Alternative or a Dream?","authors":"M. F. Cerdá","doi":"10.3390/solar2040031","DOIUrl":"https://doi.org/10.3390/solar2040031","url":null,"abstract":"DSSC technology based on natural dyes still constitutes a tempting alternative to explore. Besides the ease of extraction, most natural dyes fulfill the characteristics to be applied as sensitizers. The presented results summarize the exploration of the features of several southern dyes, mostly coming from the Antarctic region. The explored pigments showed good absorption capacity within the visible region of the light spectra, and their molecules possess functional moieties to coordinate with the TiO2 semiconductor, oxidation potential value near 1 V and reduction potential near −0.8 V, adequate thermal stability, and low fluorescence emission.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"61 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78043751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Straightforward Approach to Drawing Temperature-Dependent I–V Curves of Solar Cell Models","authors":"Rolf Klein","doi":"10.3390/solar2040030","DOIUrl":"https://doi.org/10.3390/solar2040030","url":null,"abstract":"Equivalent circuit models of solar cells are important for understanding the behavior of photovoltaic systems under different weather conditions. They provide an equation F(V,I)=0 that expresses the correspondence between voltage V and current I a cell can deliver. The performance of a cell, and, therefore, the parameters of equation F, depend on the cell’s temperature and on the incoming light’s energy and angle. One would like to simulate and visualize these dependencies in real time. Given a fixed set of parameters, no elementary solution s(V)=I of Equation F(V,I)=0 is known. Hence, circuit simulation systems employ numerical methods to solve this equation and to approximate the circuit’s I–V curve, CIV. In this note, we propose a simpler approach. Instead of expressing I as a function of V, we represent both as elementary functions V(u) and I(u) of a real parameter u. In this way, the I–V curve CIV is obtained as the image of the mapping m(u)=(V(u),I(u)) from a u-interval to the VI-plane. Our approach offers both a precise mathematical description of CIV and an easy way to draw it. This allows us to study the influence of environmental changes on CIV by smooth animations, and yet with rather simple means. In this paper, we consider temperature dependence as an example; changes in irradiance or angle could be incorporated as well. Using formulae suggested in the literature that describe how the parameters in equation F(V,I)=0 depend on temperature, it takes only a few lines of code to generate an interactive worksheet that shows how CIV, the location of the maximum power point MPP and the maximum power change as the circuit’s temperature, is altered on a slider. Such a worksheet and its location will be presented in this paper.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"16 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81455616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of a Friendly Solar Food Dryer for Domestic Over-Production","authors":"L. Fernandes, J. R. Fernandes, P. Tavares","doi":"10.3390/solar2040029","DOIUrl":"https://doi.org/10.3390/solar2040029","url":null,"abstract":"Solar drying is one of the many ways of efficiently making use of solar energy to meet the human demand for improved sustainability. In this study, we describe the construction and testing of two indirect solar dryer prototypes, especially designed for vegetables and fruits. The dryers had two compartments: a solar panel and a drying chamber. The dryers were mainly made of wood (Prototype 1) and styrofoam (Prototype 2) and both used recycled aluminum cans. The calculated yield of solar panels was 82% and 77% for Prototype 1 and 2, respectively. The drying tests performed with different fresh products showed that it was possible to dry all of them until less than 10% of their initial weight, at different times, depending on the type of product. As regards the apple slices, the solar dryers were able to remove 95.7% and 95.0% of initial moisture on a wet basis for Prototype 1 and 2, respectively. Comparative tests were conducted with an electric commercial dryer using the same product to explore the drying dynamics and costs. The cost of the final dry product, excluding the purchase of fresh goods, was 6.83 €/kg for the electric dryer, 1.78 €/kg for Prototype 1 and 1.72 €/kg for Prototype 2. Dehydrated apple slices are currently available on the market for around 34.50 €/kg. Our solar dryers can dry quality products at a very low cost for their entire life span, which allows them to compete with electric systems to prevent food waste in a cheaper and environmentally friendly way.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"26 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73026000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}