Solar-Terrestrial Physics最新文献

筛选
英文 中文
Ternary Planar Heterojunction Organic Solar Cells Based on the Ternary Active Layers: α-6T/AlPcCl/C60 基于三元有源层的三元平面异质结有机太阳能电池:α-6T/AlPcCl/C60
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-09-08 DOI: 10.3390/solar2030022
H. Ftouhi, H. Lamkaouane, M. Diani, G. Louarn, L. Arzel, J. Bernède, M. Addou, L. Cattin
{"title":"Ternary Planar Heterojunction Organic Solar Cells Based on the Ternary Active Layers: α-6T/AlPcCl/C60","authors":"H. Ftouhi, H. Lamkaouane, M. Diani, G. Louarn, L. Arzel, J. Bernède, M. Addou, L. Cattin","doi":"10.3390/solar2030022","DOIUrl":"https://doi.org/10.3390/solar2030022","url":null,"abstract":"Ternary planar heterojunction organic solar cells (PHJ-OPVs) were fabricated using three organic small molecules, alpha-sexithiophene (α-6T), aluminum phthalocyanine chloride (AlPcCl) and fullerene (C60). These molecules can be easily sublimated under a vacuum; they have complementary optical absorption spectra and their energy band structure alignment is favorable for electronic charge transfers. Moreover, α-6T and AlPcCl have almost the same HOMO, which is desirable to avoid any decrease in open circuit voltage. The AlPcCl intercalated layer bridges the energy levels of the electron donor, α-6T, and the electron acceptor, C60, which facilitates charge transport through the energy cascade effect. Moreover, the charge carrier mobility measurements of AlPcCl, using the space charge limited current method, demonstrated that it iss ambipolar. All these properties combine to improve the power conversion efficiency (PCE) of PHJ-OPVs by moving from binary structures (α-6T/C60, α-6T/AlPcCl and AlPcCl/C60) to ternary ones (α-6T/AlPcCl/C60). We show, in this study, that both interfaces of the ternary PHJ-OPVs are efficient for carrier separation. After optimization of the different layer thickness, we show that, by comparing the optimum efficiencies of the binary PHJ-OPVs, the realization of ternary PHJ-OPVs, based on the active layers α-6T/AlPcCl/C60, using the following optimized method, allows us to achieve a PCE of 4.33%.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"15 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87015089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Satellite-Based and Ångström–Prescott Estimated Global Horizontal Irradiance under Different Cloud Cover Conditions in South African Locations 基于卫星和Ångström-Prescott估算的南非不同云量条件下全球水平辐照度的比较
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-08-16 DOI: 10.3390/solar2030021
Brighton Mabasa, M. Lysko, S. J. Moloi
{"title":"Comparison of Satellite-Based and Ångström–Prescott Estimated Global Horizontal Irradiance under Different Cloud Cover Conditions in South African Locations","authors":"Brighton Mabasa, M. Lysko, S. J. Moloi","doi":"10.3390/solar2030021","DOIUrl":"https://doi.org/10.3390/solar2030021","url":null,"abstract":"The study compares the performance of satellite-based datasets and the Ångström–Prescott (AP) model in estimating the daily global horizontal irradiance (GHI) for stations in South Africa. The daily GHI from four satellites (namely SOLCAST, CAMS, NASA SSE, and CMSAF SARAH) and the Ångström–Prescott (AP) model are evaluated by validating them against ground observation data from eight radiometric stations located in all six macro-climatological regions of South Africa, for the period 2014-19. The evaluation is carried out under clear-sky, all-sky, and overcast-sky conditions. CLAAS-2 cloud fractional coverage data are used to determine clear and overcast sky days. The observed GHI data are first quality controlled using the Baseline Surface Radiation Network methodology and then quality control of the HelioClim model. The traditional statistical benchmarks, namely the relative mean bias error (rMBE), relative root mean square error (rRMSE), relative mean absolute error (rMAE), and the coefficient of determination (R2) provided information about the performance of the datasets. Under clear skies, the estimated datasets showed excellent performance with maximum rMBE, rMAE, and rRMSE less than 6.5% and a minimum R2 of 0.97. In contrast, under overcast-sky conditions there was noticeably poor performance with maximum rMBE (24%), rMAE (29%), rRMSE (39%), and minimum R2 (0.74). For all-sky conditions, good correlation was found for SOLCAST (0.948), CMSAF (0.948), CAMS (0.944), and AP model (0.91); all with R2 over 0.91. The maximum rRMSE for SOLCAST (10%), CAMS (12%), CMSAF (12%), and AP model (11%) was less than 13%. The maximum rMAE for SOLCAST (7%), CAMS (8%), CMSAF (8%), and AP model (9%) was less than 10%, showing good performance. While the R2 correlations for the NASA SSE satellite-based GHI were less than 0.9 (0.896), the maximum rRMSE was 18% and the maximum rMAE was 15%, showing rather poor performance. The performance of the SOLCAST, CAMS, CMSAF, and AP models was almost the same in the study area. CAMS, CMSAF, and AP models are viable, freely available datasets for estimating the daily GHI at South African locations with quantitative certainty. The relatively poor performance of the NASA SSE datasets in the study area could be attributed to their low spatial resolution of 0.5° × 0.5° (~55 km × 55 km). The feasibility of the datasets decreased significantly as the proportion of sky that was covered by clouds increased. The results of the study could provide a basis/data for further research to correct biases between in situ observations and the estimated GHI datasets using machine learning algorithms.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"37 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74031024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Study of Quantum Dot Solar Cell with Two Different ETLs of WS2 and IGZO Using SCAPS-1D Simulator 利用SCAPS-1D模拟器对WS2和IGZO两种不同ETLs的量子点太阳能电池进行比较研究
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-08-04 DOI: 10.3390/solar2030020
Naureen, Sadanand, P. Lohia, D. K. Dwivedi, S. Ameen
{"title":"A Comparative Study of Quantum Dot Solar Cell with Two Different ETLs of WS2 and IGZO Using SCAPS-1D Simulator","authors":"Naureen, Sadanand, P. Lohia, D. K. Dwivedi, S. Ameen","doi":"10.3390/solar2030020","DOIUrl":"https://doi.org/10.3390/solar2030020","url":null,"abstract":"Quantum dot solar cells have received significant attention in comparison to standard solar cells because of their hybrid nature, low production costs, and higher power conversion efficiency. Although quantum dot solar cells (QDSCs) have several benefits over ordinary solar cells, their performance lags due to carrier combination within the quasi-neutral region (QNR). The electron transport layer (ETL) and hole transport layer (HTL) are the two layers that have the most effect on QDSC performance. This numerical analysis is carried out by using the Solar Cell Capacitance Simulator-1 dimensional software (SCAPS-1D). In this paper, the optimization of two different device structure investigations is performed. In this proposed device structure, WS2 and IGZO are used as two ETL, CdS is used as a buffer layer, Sb2Se3 is used as an absorber layer, and PbS as HTL. Initially, the optimization of the device has been performed, followed by depth analysis of the doping densities. Resistance analysis is also performed to illustrate the effect of resistance on the device. Further, the impact of temperature on the device parameters is also represented, followed by a contour plot between thickness and bandgap for both devices. The impact of the series and shunt resistance on the performance of the solar cell is investigated. The effect of temperature is studied further, and it is observed that the solar device is temperature-sensitive. Finally, the optimized performance with IGZO ETL with PCE of 20.94% is achieved.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"414 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75001008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Low-Bandgap Mixed Tin–Lead Perovskite Solar Cells 低带隙混合锡铅钙钛矿太阳能电池
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-07-01 DOI: 10.3390/solar2030019
Jingwei Zhu, Cong Chen, Dewei Zhao
{"title":"Low-Bandgap Mixed Tin–Lead Perovskite Solar Cells","authors":"Jingwei Zhu, Cong Chen, Dewei Zhao","doi":"10.3390/solar2030019","DOIUrl":"https://doi.org/10.3390/solar2030019","url":null,"abstract":"Low-bandgap mixed tin (Sn)–lead (Pb) perovskite solar cells have been extensively investigated in the past few years due to their great potential in high-performance perovskite/perovskite tandem solar cells. From this perspective, we briefly summarize the mechanism of understanding of additives and the advances in the efficiency and stability of such low-bandgap Sn-Pb perovskite materials and solar cells in terms of various effective strategies for suppressing the defects and oxidation of Sn2+, regulating crystallization growth, etc. We then provide a perspective regarding the achievement of high-quality, low-bandgap Sn-Pb perovskites and highly efficient solar cells.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"60 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77744657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Possible difference in the formation of coronal mass ejections of two types 两种类型的日冕物质抛射形成的可能差异
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-06-30 DOI: 10.12737/stp-82202202
V. Eselevich, M. Eselevich, I. Zimovets
{"title":"Possible difference in the formation of coronal mass ejections of two types","authors":"V. Eselevich, M. Eselevich, I. Zimovets","doi":"10.12737/stp-82202202","DOIUrl":"https://doi.org/10.12737/stp-82202202","url":null,"abstract":"Analysis of seven near-limb coronal mass ejections (CMEs) has shown that at distances R<1.4R from the center of the Sun CMEs according to their formation can be divided into two types: type 1 CMEs and type 2 CMEs. In the case of type 1 CMEs, the frontal structure (FS) is formed by processes occurring in FS itself, which is the outer shell of the magnetic flux rope. As for type 2 CMEs, EP-CME, internal arched structures erupt, explosively expand, capture and accelerate the more distant arched structures, which merge to form the frontal structure of the type 2 CMEs.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49109050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Interactive computer model for aurora forecast and analysis 用于极光预报和分析的交互式计算机模型
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-06-30 DOI: 10.12737/stp-82202213
A. Vorobev, A. Soloviev, V. Pilipenko, G. Vorobeva
{"title":"Interactive computer model for aurora forecast and analysis","authors":"A. Vorobev, A. Soloviev, V. Pilipenko, G. Vorobeva","doi":"10.12737/stp-82202213","DOIUrl":"https://doi.org/10.12737/stp-82202213","url":null,"abstract":"An interactive computer model of a short-term (with a horizon 30–70 min) forecast of aurora intensity has been developed in the form of a web-based geoinformation system. The OVATION-Prime empirical model is used as the basic software, which establishes statistical relationships between parameters of the solar wind, the interplanetary magnetic field, and auroral particle fluxes. On the basis of this model, a system has been built which simulates the spatial planetary distribution of the probability of observing auroras and a number of accompanying quantities. Data visualization is carried out on the basis of the virtual globe technology and is provided to the end user via a specialized web service. The forecast has been verified by comparing the model predictions with the data from 16 cameras conducting continuous observations of the auroras in the visible spectrum. The proportion of coincidences between the predicted and observed auroras was 86 %. The developed service enables both forecasting and analysis of past events. The system allows us to compare the spatial distribution of probability of auroras with railway transport systems for the territory of the Russian Federation.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46467118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Generation of Alfvén waves in magnetized plasma by laser plasma bunches at Mach numbers much less than unity 马赫数远小于1的激光等离子体束在磁化等离子体中产生Alfvén波
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-06-30 DOI: 10.12737/stp-82202214
V. Tishchenko, A. Berezutsky, Leila Dmitrieva, I. Miroshnichenko, I. Shaikhislamov
{"title":"Generation of Alfvén waves in magnetized plasma by laser plasma bunches at Mach numbers much less than unity","authors":"V. Tishchenko, A. Berezutsky, Leila Dmitrieva, I. Miroshnichenko, I. Shaikhislamov","doi":"10.12737/stp-82202214","DOIUrl":"https://doi.org/10.12737/stp-82202214","url":null,"abstract":"In this paper, we examine a torsional Alfvén wave produced by periodic plasma bunches in a magnetized plasma flux tube. A new effect has been revealed: the wave is generated not only during the action of bunches, but also for a long time after the termination, which makes it possible to increase the wavelength by several times. We have determined the conditions under which the wave contains η~40 % of the total bunch energy. The wave radius depends on the energy of one bunch; and the length, on their number. The optimum number of bunches is 15. Simultaneously with the Alfvén wave, a bunch plasma jet (η~35 %) and a slow magnetosonic wave (η~10 %) propagate in the force tube. Similarity parameters scale the results to laboratory and near-Earth magnetized plasma.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42083681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape of spectrum of galactic cosmic ray intensity fluctuations 星系宇宙射线强度波动的光谱形状
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-06-30 DOI: 10.12737/stp-82202211
S. Starodubtsev
{"title":"Shape of spectrum of galactic cosmic ray intensity fluctuations","authors":"S. Starodubtsev","doi":"10.12737/stp-82202211","DOIUrl":"https://doi.org/10.12737/stp-82202211","url":null,"abstract":"The impact of solar wind plasma on fluxes of galactic cosmic rays (CR) penetrating from the outside into the heliosphere with energies above ~1 GeV leads to temporal variations in the CR intensity in a wide frequency range. Cosmic rays being charged particles, their modulation occurs mainly under impacts of the interplanetary magnetic field. \u0000It is well known that the observed spectrum of interplanetary magnetic field (IMF) fluctuations in a wide frequency range ν from ~10–7 to ~10 Hz has a pronounced falling character and consists of three sections: energy, inertial, and dissipative. Each of them is described by the power law PIMF(ν)~ν–α, while the IMF spectrum index α increases with increasing frequency. The IMF fluctuations in each of these sections are also characterized by properties that depend on their nature. \u0000Also known are established links between fluctuation spectra of the interplanetary magnetic field and galactic cosmic rays in the case of modulation of the latter by Alfvén or fast magnetosonic waves. The theory predicts that fluctuation spectra of cosmic rays should also be described by the power law PCR(ν)~ν–γ. However, the results of many years of SHICRA SB RAS research into the nature and properties of cosmic ray intensity fluctuations based on data from neutron monitors at stations with different geomagnetic cut-offs RC from 0.5 to 6.3 GV show that the observed spectrum of fluctuations in galactic cosmic ray intensity in the frequency range above 10–4 Hz becomes flat, i.e. it is similar to white noise. This fact needs to be realized and explained. \u0000This paper reports the results of research into the shape of the spectrum of galactic cosmic ray intensity fluctuations within a frequency range ν from ~10–6 to ~1 Hz and compares them with model calculations of white noise spectra, using measurement data from the neutron monitor of the Apatity station. A possible physical explanation has been given for the observed shape of the cosmic ray fluctuation spectrum on the basis of the known mechanisms of their modulation in the heliosphere.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48733163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent microwave emission as an indicator of non-thermal energy release at a coronal X-ray point 相干微波发射作为日冕x射线点非热能释放的指示器
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-06-30 DOI: 10.12737/stp-82202201
A. Altyntsev, N. Meshalkina, I. Myshyakov
{"title":"Coherent microwave emission as an indicator of non-thermal energy release at a coronal X-ray point","authors":"A. Altyntsev, N. Meshalkina, I. Myshyakov","doi":"10.12737/stp-82202201","DOIUrl":"https://doi.org/10.12737/stp-82202201","url":null,"abstract":"A response has been found in a narrow band 5–7 GHz of microwave emission to the appearance of a coronal X-ray point. The emission source is a short X-ray loop located in the tail part of an active region and occurring when magnetic fields are reconnected near the footpoints of high and low loops rooted in nearby magnetic pores of the opposite polarity. The power of energy release is low and no response of the hot plasma component was observed in hard X-rays. Analysis of images in soft X-ray and extreme UV radiation shows that microwave emission has a coherent nature and is generated at a frequency of about twice the plasma frequency by electrons with energies above several tens of keV. The result indicates a high diagnostic potential of microwave observations to detect acceleration processes in weak transitory events and can be useful for observation planning with new generation radioheliographs currently under development.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45250329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparative analysis of variability in the mid-latitude stratosphere and ionosphere in winter periods 冬季中纬度平流层和电离层变率的比较分析
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-06-30 DOI: 10.12737/stp-82202209
A. Yasyukevich, A. Vesnin
{"title":"Comparative analysis of variability in the mid-latitude stratosphere and ionosphere in winter periods","authors":"A. Yasyukevich, A. Vesnin","doi":"10.12737/stp-82202209","DOIUrl":"https://doi.org/10.12737/stp-82202209","url":null,"abstract":"In this work, we perform a joint analysis of the spatial-temporal dynamics of ionospheric and stratospheric variability (with scales characteristic of internal gravity waves) at different longitudes of midlatitudes of the Northern Hemisphere. We analyze the winter periods of 2012–2013 and 2018–2019 when strong midwinter sudden stratospheric warmings (SSWs) occurred. An increase in the variability in the stratosphere is shown to occur in a limited latitude interval 40°–60° N in the region of existence of a winter circumpolar vortex. Under SSW conditions, the generation of wave disturbances in the stratosphere ceases manifesting itself in a significant decrease in the stratospheric variability index. Similar behavior is noted in the spatial-temporal dynamics of the index of the total electron content variability. The level of ionospheric variability at midlatitudes decreases significantly after SSW peaks. The decrease in the ionospheric variability can be explained by a reduction in wave generation in the stratosphere, associated with the destruction of the circumpolar vortex during SSWs","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46505888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信