Solar-Terrestrial Physics最新文献

筛选
英文 中文
Interdigitated Back Contact Technology as Final Evolution for Industrial Crystalline Single-Junction Silicon Solar Cell 交叉背触技术是工业晶体单结硅太阳能电池的最终发展方向
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-12-22 DOI: 10.3390/solar3010001
R. Kopecek, F. Buchholz, V. Mihailetchi, J. Libal, J. Lossen, Ning Chen, H. Chu, C. Peter, Tudor Timofte, A. Halm, Yonggang Guo, X. Qu, Xiang Wu, Jiaqing Gao, Peng Dong
{"title":"Interdigitated Back Contact Technology as Final Evolution for Industrial Crystalline Single-Junction Silicon Solar Cell","authors":"R. Kopecek, F. Buchholz, V. Mihailetchi, J. Libal, J. Lossen, Ning Chen, H. Chu, C. Peter, Tudor Timofte, A. Halm, Yonggang Guo, X. Qu, Xiang Wu, Jiaqing Gao, Peng Dong","doi":"10.3390/solar3010001","DOIUrl":"https://doi.org/10.3390/solar3010001","url":null,"abstract":"We present our own Interdigitated Back Contact (IBC) technology, which was developed at ISC Konstanz and implemented in mass production with and at SPIC Solar in Xining, China, with production efficiencies of over 24%. To our knowledge, this is the highest efficiency achieved in the mass production of crystalline silicon solar cells without the use of charge-carrier-selective contacts. With an adapted screen-printing sequence, it is possible to achieve open-circuit voltages of over 700 mV. Advanced module technology has been developed for the IBC interconnection, which is ultimately simpler than for conventional double-sided contacted solar cells. In the next step, we will realize low-cost charge-carrier-selective contacts for both polarities in a simple sequence using processes developed and patented at ISC Konstanz. With the industrialisation of this process, it will be possible to achieve efficiencies well above 25% at low cost. We will show that with the replacement of silver screen-printed contacts by copper or aluminium metallisation, future IBC technology will be the end product for the PV market, as it is the best performing c-Si technology, leading to the lowest cost of electricity, even in utility-scale applications.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84941280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation 倒置全无机CsPbI3和CsPbI2Br钙钛矿太阳能电池的SCAPS-1D模拟优化
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-12-09 DOI: 10.3390/solar2040033
Carlos O. Pinzon, Nahuel Martínez, G. Casas, F. Alvira, Nicole Denon, Gastón Brusasco, H. M. Medina Chanduví, A. Gil Rebaza, M. Cappelletti
{"title":"Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation","authors":"Carlos O. Pinzon, Nahuel Martínez, G. Casas, F. Alvira, Nicole Denon, Gastón Brusasco, H. M. Medina Chanduví, A. Gil Rebaza, M. Cappelletti","doi":"10.3390/solar2040033","DOIUrl":"https://doi.org/10.3390/solar2040033","url":null,"abstract":"Perovskite solar cells (PSCs) have substantially increased their power conversion efficiency (PCE) to more than 25% in recent years. However, the instability of these devices is still a strong obstacle for their commercial applications. Recently, all-inorganic PSCs based on CsPbI3 and CsPbI2Br as the perovskite layer have shown enhanced long-term stability, which makes them potential candidates for commercialization. Currently, all-inorganic PSCs with inverted p-i-n configuration have not yet reached the high efficiency achieved in the normal n-i-p structure. However, the inverted p-i-n architecture has recently drawn attention of researchers because it is more suitable to prepare tandem solar cells. In this work, a theoretical study of inverted p-i-n all-inorganic PSCs based on CsPbI3 and CsPbI2Br as the perovskite layer was carried out using SCAPS-1D software (ver. 3.3.09). The performance of different architectures of PSC was examined and compared by means of numerical simulations using various inorganic materials as the hole transport layer (HTL) and the electron transport layer (ETL). The results reveal that CuI and ZnO are the most suitable as HTL and ETL, respectively. In addition, the performance of the devices was significantly improved by optimizing the hole mobility in CuI as well as the thickness, doping density, and defect density in the absorber layer. Maximum efficiencies of 26.5% and 20.6% were obtained under optimized conditions for the inverted all-inorganic CsPbI3- and CsPbI2Br-based PSCs, respectively. These results indicate that further improvements in the performance of such devices are still possible.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86004432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Rooftop PV or Hybrid Systems and Retrofitted Low-E Coated Windows for Energywise and Self-Sustainable School Buildings in Bangladesh 孟加拉国节能和自我可持续学校建筑的屋顶光伏或混合系统和改造的低e涂层窗户
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-11-16 DOI: 10.3390/solar2040032
M. Nur-E-Alam, M. K. Basher, Iftekharuzzaman, Kazi Zehad Mostofa, Mohammad Aminul Islam, A. Haque, Narottam Das
{"title":"Rooftop PV or Hybrid Systems and Retrofitted Low-E Coated Windows for Energywise and Self-Sustainable School Buildings in Bangladesh","authors":"M. Nur-E-Alam, M. K. Basher, Iftekharuzzaman, Kazi Zehad Mostofa, Mohammad Aminul Islam, A. Haque, Narottam Das","doi":"10.3390/solar2040032","DOIUrl":"https://doi.org/10.3390/solar2040032","url":null,"abstract":"The electricity crisis is a common issue in Bangladesh; however, recently the electricity scenario has been getting worse due to various reasons including power generation and distribution all over the country. Meanwhile, the large number of people requires a huge amount of energy which is not possible to be met by the national grid due to the limited power generation from different plants. Among all renewable energy sources, the solar photovoltaics (PV) system is the best choice as a generation source, either off-grid or with a grid-tied connection, to reduce the pressure on the national grid. In Bangladesh, there are more than 175,000 schools, and it is possible to generate a huge amount of renewable (solar) power to supply all the schools by using rooftop PV systems. We propose a new approach that combines solar energy harvesting and savings to make the schools self-sufficient and energywise. We performed a Hybrid Optimization Model for Multiple Energy Resources (HOMER) pro simulation and find that it was possible to generate approximately 200 megawatts (MW) of power. We conducted a feasibility study on generating power from rooftop PV systems on school buildings and reduced the power consumption using retrofitted thin-film-coated glass by around 16–20% per day depending on the school size, which can help the national power grid system by either making all the schools off-grid or grid-connected to supply power to the national grid. In addition, we perform a HelioScope simulation to investigate the maximum upscaling of PV sizing for the rooftops of school buildings in Bangladesh to realize how to make each school a mini solar power station in the future. The HelioScope simulation performance showed that it was possible to generate approximately 96,993 kWh per year from one school building.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86664591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dyes from the Southern Lands: An Alternative or a Dream? 来自南方的染料:一种选择还是一场梦?
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-11-15 DOI: 10.3390/solar2040031
M. F. Cerdá
{"title":"Dyes from the Southern Lands: An Alternative or a Dream?","authors":"M. F. Cerdá","doi":"10.3390/solar2040031","DOIUrl":"https://doi.org/10.3390/solar2040031","url":null,"abstract":"DSSC technology based on natural dyes still constitutes a tempting alternative to explore. Besides the ease of extraction, most natural dyes fulfill the characteristics to be applied as sensitizers. The presented results summarize the exploration of the features of several southern dyes, mostly coming from the Antarctic region. The explored pigments showed good absorption capacity within the visible region of the light spectra, and their molecules possess functional moieties to coordinate with the TiO2 semiconductor, oxidation potential value near 1 V and reduction potential near −0.8 V, adequate thermal stability, and low fluorescence emission.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78043751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Straightforward Approach to Drawing Temperature-Dependent I–V Curves of Solar Cell Models 绘制太阳电池模型温度相关I-V曲线的直接方法
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-11-04 DOI: 10.3390/solar2040030
Rolf Klein
{"title":"A Straightforward Approach to Drawing Temperature-Dependent I–V Curves of Solar Cell Models","authors":"Rolf Klein","doi":"10.3390/solar2040030","DOIUrl":"https://doi.org/10.3390/solar2040030","url":null,"abstract":"Equivalent circuit models of solar cells are important for understanding the behavior of photovoltaic systems under different weather conditions. They provide an equation F(V,I)=0 that expresses the correspondence between voltage V and current I a cell can deliver. The performance of a cell, and, therefore, the parameters of equation F, depend on the cell’s temperature and on the incoming light’s energy and angle. One would like to simulate and visualize these dependencies in real time. Given a fixed set of parameters, no elementary solution s(V)=I of Equation F(V,I)=0 is known. Hence, circuit simulation systems employ numerical methods to solve this equation and to approximate the circuit’s I–V curve, CIV. In this note, we propose a simpler approach. Instead of expressing I as a function of V, we represent both as elementary functions V(u) and I(u) of a real parameter u. In this way, the I–V curve CIV is obtained as the image of the mapping m(u)=(V(u),I(u)) from a u-interval to the VI-plane. Our approach offers both a precise mathematical description of CIV and an easy way to draw it. This allows us to study the influence of environmental changes on CIV by smooth animations, and yet with rather simple means. In this paper, we consider temperature dependence as an example; changes in irradiance or angle could be incorporated as well. Using formulae suggested in the literature that describe how the parameters in equation F(V,I)=0 depend on temperature, it takes only a few lines of code to generate an interactive worksheet that shows how CIV, the location of the maximum power point MPP and the maximum power change as the circuit’s temperature, is altered on a slider. Such a worksheet and its location will be presented in this paper.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81455616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Friendly Solar Food Dryer for Domestic Over-Production 针对国内生产过剩的环保型太阳能食品烘干机设计
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-11-01 DOI: 10.3390/solar2040029
L. Fernandes, J. R. Fernandes, P. Tavares
{"title":"Design of a Friendly Solar Food Dryer for Domestic Over-Production","authors":"L. Fernandes, J. R. Fernandes, P. Tavares","doi":"10.3390/solar2040029","DOIUrl":"https://doi.org/10.3390/solar2040029","url":null,"abstract":"Solar drying is one of the many ways of efficiently making use of solar energy to meet the human demand for improved sustainability. In this study, we describe the construction and testing of two indirect solar dryer prototypes, especially designed for vegetables and fruits. The dryers had two compartments: a solar panel and a drying chamber. The dryers were mainly made of wood (Prototype 1) and styrofoam (Prototype 2) and both used recycled aluminum cans. The calculated yield of solar panels was 82% and 77% for Prototype 1 and 2, respectively. The drying tests performed with different fresh products showed that it was possible to dry all of them until less than 10% of their initial weight, at different times, depending on the type of product. As regards the apple slices, the solar dryers were able to remove 95.7% and 95.0% of initial moisture on a wet basis for Prototype 1 and 2, respectively. Comparative tests were conducted with an electric commercial dryer using the same product to explore the drying dynamics and costs. The cost of the final dry product, excluding the purchase of fresh goods, was 6.83 €/kg for the electric dryer, 1.78 €/kg for Prototype 1 and 1.72 €/kg for Prototype 2. Dehydrated apple slices are currently available on the market for around 34.50 €/kg. Our solar dryers can dry quality products at a very low cost for their entire life span, which allows them to compete with electric systems to prevent food waste in a cheaper and environmentally friendly way.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73026000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
United States Solar Investment: A Feasibility Study of Solar Farms in Kentucky 美国太阳能投资:肯塔基州太阳能农场的可行性研究
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-10-27 DOI: 10.3390/solar2040028
Youngil Kim, Allie Skaggs, James Ferrell
{"title":"United States Solar Investment: A Feasibility Study of Solar Farms in Kentucky","authors":"Youngil Kim, Allie Skaggs, James Ferrell","doi":"10.3390/solar2040028","DOIUrl":"https://doi.org/10.3390/solar2040028","url":null,"abstract":"The United States is experiencing a large growth in the solar sector. The U.S. solar power capacity has grown from 0.34 Gigawatts (GW) in 2008 to an estimated 97.2 GW today. However, some states have had difficulty installing large scale solar farms due to concerns regarding geographic location, political climate, or economic factors. Kentucky (KY) is one of the states which is below the national average for solar energy production. However, KY contains a wealth of potential for these types of farms with decent solar irradiation levels and large tracts of unused land for solar farms. For the study, this paper selects three representative areas of KY by using PVWatts and topographical maps which can theoretically produce enough electricity so that KY can meet or exceed the national generation percentage average (2.3% or 2.06 TWh annually in KY’s case). The study analyzes the economic feasibility of solar photovoltaic systems (PV) farms in terms of Cumulative Cash Flow ($) and Payback Time (Year) by using the Cost of Renewable Energy Spreadsheet Tool (CREST). Furthermore, this paper estimates the Average/Median/High output power (kWh) annually for the scenario among three areas in Kentucky, Smithland, Hickman, and Falls of Rough. In this theoretical scenario, an average 2.27 TWh would be generated annually which exceeds the national generation percentage average. Furthermore, by the sixth year, the cumulative cash flow would exceed the breakeven point, proving the feasibility of these solar farms. The annual average power generation estimates for the areas of Smithland, Hickman, and Falls of Rough are 0.3741 TWh, 1.1628 TWh, and 0.731 TWh respectively. The average profit per MWh estimates for the areas of Smithland, Hickman, and Falls of Rough are $11,130.12/MWh, $10,742.46/MWh, and $11,392.01/MWh respectively. According to CREST, the final cumulative cash flow, after the 25-year life span of the panels, would be approximately $624,566,720.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75570953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison between Time- and Observation-Based Gaussian Process Regression Models for Global Horizontal Irradiance Forecasting 基于时间和观测的高斯过程回归模型在全球水平辐射预测中的比较
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-10-21 DOI: 10.3390/solar2040027
Shab Gbémou, J. Eynard, S. Thil, S. Grieu
{"title":"Comparison between Time- and Observation-Based Gaussian Process Regression Models for Global Horizontal Irradiance Forecasting","authors":"Shab Gbémou, J. Eynard, S. Thil, S. Grieu","doi":"10.3390/solar2040027","DOIUrl":"https://doi.org/10.3390/solar2040027","url":null,"abstract":"With the development of predictive management strategies for power distribution grids, reliable information on the expected photovoltaic power generation, which can be derived from forecasts of global horizontal irradiance (GHI), is needed. In recent years, machine learning techniques for GHI forecasting have proved to be superior to classical approaches. This work addresses the topic of multi-horizon forecasting of GHI using Gaussian process regression (GPR) and proposes an in-depth study on some open questions: should time or past GHI observations be chosen as input? What are the appropriate kernels in each case? Should the model be multi-horizon or horizon-specific? A comparison between time-based GPR models and observation-based GPR models is first made, along with a discussion on the best kernel to be chosen; a comparison between horizon-specific GPR models and multi-horizon GPR models is then conducted. The forecasting results obtained are also compared to those of the scaled persistence model. Four performance criteria and five forecast horizons (10 min, 1 h, 3 h, 5 h, and 24 h) are considered to thoroughly assess the forecasting results. It is observed that, when seeking multi-horizon models, using a quasiperiodic kernel and time as input is favored, while the best horizon-specific model uses an automatic relevance determination rational quadratic kernel and past GHI observations as input. Ultimately, the choice depends on the complexity and computational constraints of the application at hand.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72462136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Forecasts Based on the Clear Sky Index or the Clearness Index: Which Is Better? 晴空指数与净度指数孰优孰劣?
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-10-11 DOI: 10.3390/solar2040026
P. Lauret, R. Alonso-Suárez, Josselin Le Gal La Salle, M. David
{"title":"Solar Forecasts Based on the Clear Sky Index or the Clearness Index: Which Is Better?","authors":"P. Lauret, R. Alonso-Suárez, Josselin Le Gal La Salle, M. David","doi":"10.3390/solar2040026","DOIUrl":"https://doi.org/10.3390/solar2040026","url":null,"abstract":"In the realm of solar forecasting, it is common to use a clear sky model output to deseasonalise the solar irradiance time series needed to build the forecasting models. However, most of these clear sky models require the setting of atmospheric parameters for which accurate values may not be available for the site under study. This can hamper the accuracy of the prediction models. Normalisation of the irradiance data with a clear sky model leads to the construction of forecasting models with the so-called clear sky index. Another way to normalize the irradiance data is to rely on the extraterrestrial irradiance, which is the irradiance at the top of the atmosphere. Extraterrestrial irradiance is defined by a simple equation that is related to the geometric course of the sun. Normalisation with the extraterrestrial irradiance leads to the building of models with the clearness index. In the solar forecasting domain, most models are built using time series based on the clear sky index. However, there is no empirical evidence thus far that the clear sky index approach outperforms the clearness index approach. Therefore the goal of this preliminary study is to evaluate and compare the two approaches. The numerical experimental setup for evaluating the two approaches is based on three forecasting methods, namely, a simple persistence model, a linear AutoRegressive (AR) model, and a non-linear neural network (NN) model, all of which are applied at six sites with different sky conditions. It is shown that normalization of the solar irradiance with the help of a clear sky model produces better forecasts irrespective of the type of model used. However, it is demonstrated that a nonlinear forecasting technique such as a neural network built with clearness time series can beat simple linear models constructed with the clear sky index.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79869789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Topside ionosphere during solar cosmic ray bursts and Forbush decreases in galactic cosmic rays 太阳宇宙射线爆发时的上层电离层和星系宇宙射线的Forbush减少
IF 1.1
Solar-Terrestrial Physics Pub Date : 2022-09-30 DOI: 10.12737/stp-83202205
V. Yanchukovsky, A. Belinskaya
{"title":"Topside ionosphere during solar cosmic ray bursts and Forbush decreases in galactic cosmic rays","authors":"V. Yanchukovsky, A. Belinskaya","doi":"10.12737/stp-83202205","DOIUrl":"https://doi.org/10.12737/stp-83202205","url":null,"abstract":"The paper considers the behavior of the upper ionosphere at heights of the F2 layer during Forbush decreases in galactic cosmic rays (GCR FDs) and solar cosmic ray (SCR) bursts. We use the results of long-term continuous observations of cosmic rays and the ionosphere in Novosibirsk for the period from 1968 to 2021. The ionospheric disturbances in the F2 layer during GCR FDs, which were accompanied by a magnetic storm, took the form of an ionospheric storm negative phase. The scale of the negative phase of the ionospheric F-layer disturbance increases with increasing Dst index of the geomagnetic storm. This increase in the amplitude of the ionospheric disturbance becomes more and more significant depending on the magnitude of Forbush decreases. A burst of the amplitude of the daily variation in the F2-layer critical frequency occurred eight days after SCR bursts and GCR FD front. We assume that this burst might have been caused by disturbances in the lower atmosphere due to significant variations in the intensity of SCR and GCR fluxes.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45814336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信