{"title":"Definition of the Alfvén mode in inhomogeneous magnetic field","authors":"D. Klimushkin, P. Mager","doi":"10.12737/stp-91202304","DOIUrl":"https://doi.org/10.12737/stp-91202304","url":null,"abstract":"The article is methodological and defines the concept of the linear Alfvén mode. There are two definitions — electrodynamic and hydrodynamic. In the former, the Alfvén mode is considered a wave with a potential transverse electric field. In the latter, waves are more often identified with the Alfvén mode, plasma motion in which is purely vortex. While these definitions are equivalent for homogeneous plasma, they are incompatible if the field line curvature is taken into account: if the transverse electric field is purely potential, the plasma speed has not only a vortex component, but also a potential one, and vice versa. The electrodynamic and hydrodynamic definitions are equivalent only if the wave electric field completely lacks a component along the binormal to the external magnetic field. However, such waves do not exist in nature.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42903962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Martines-Bedenko, V. Pilipenko, K. Shiokawa, R. Akbashev
{"title":"Electromagnetic ULF/ELF oscillations caused by the eruption of the Tonga volcano","authors":"V. Martines-Bedenko, V. Pilipenko, K. Shiokawa, R. Akbashev","doi":"10.12737/stp-91202306","DOIUrl":"https://doi.org/10.12737/stp-91202306","url":null,"abstract":"The eruption of the Tonga volcano on January 13 and 15, 2022 and related intense lightning activity led to the excitation of a number of specific electromagnetic oscillations in different frequency ranges. We examine properties of these oscillations, using data from magnetometers of various types located in Kamchatka and in the Pacific region. We confirmed that there might have been a geomagnetic response to the formation of an acoustic resonance between the Earth surface and the ionosphere: localized harmonic oscillations with a frequency 3.5–4.0 mHz, which lasted for ~1.5 hr, were detected ~15 min after the beginning of the eruption at distance of ~800 km. An increase was observed in the intensity of the Schumann resonance at stations in the Far East. Broadband emission stimulated by intense volcanic lightning was detected to occur in the Pc1 range (2–5 Hz). The emission presumably results from the excitation of the magnetosonic waveguide in the upper ionosphere by lightning activity.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42091551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadezhda Yagova, Eugeny Fedorov, Vyacheslav Pilipenko, Nikolay Mazur, Valeriy Martines-Bedenko
{"title":"Geomagnetic variations in the frequency range 2.5–12 Hz in the ionospheric F layer as measured by SWARM satellites","authors":"Nadezhda Yagova, Eugeny Fedorov, Vyacheslav Pilipenko, Nikolay Mazur, Valeriy Martines-Bedenko","doi":"10.12737/stp-91202305","DOIUrl":"https://doi.org/10.12737/stp-91202305","url":null,"abstract":"We have analyzed geomagnetic variations in the 2.5–12 Hz frequency range in the ionospheric F layer above the electron density maximum, using data from two SWARM satellites. The analysis is based on the data obtained under weak and moderate magnetic activity for 12 days in September and December 2016. To separate spatial inhomogeneities from time variations of the magnetic field, we analyzed signal waveforms and cross-spectra in a 2.56 s sliding window. A maximum in the occurrence and power spectral density of the variations was found at latitudes above the polar boundary of the auroral oval, which correspond to the magnetospheric input layers and dayside polar cusp/cleft. Typical waveforms of the high-latitude variations are the wave packets lasting for 5–10 periods, recorded with a short time delay by two satellites spaced by 40–100 km. These variations might be the ionospheric manifestation of the electromagnetic ion-cyclotron waves generated at the non-equatorial magnetosphere near the polar cusp. The waveforms and cross-spectra of the variations are examined in more details for two cases with different spatial distributions of the magnetic field in the ionosphere. For the ionospheric conditions corresponding to event 1 (September 17, 80° geomagnetic latitude, afternoon sector), spatial distributions of wave magnetic field in the ionosphere and on Earth are estimated using a model of Alfvén beam with a finite radius incident on the ionosphere [Fedorov et al., 2018].","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135627454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Features of artificial ionosphere turbulence induced by the O- and X-mode HF heating near the F2-layer critical frequency","authors":"Tatiana Borisova, Nataly Blagoveshchenskaya, Alexey Kalishin","doi":"10.12737/stp-91202303","DOIUrl":"https://doi.org/10.12737/stp-91202303","url":null,"abstract":"We present experimental results from the studies of large-scale inhomogeneities along the external magnetic field with increased electron density, electron temperature, and excitation of elongated plasma waves (Langmuir and ion-acoustic), induced by the ordinary (O-mode) and extraordinary (X-mode) HF heating near the F2-layer critical frequency, in the high-latitude ionospheric F-region. The experiments have been carried out at the EISCAT/Heating facility (Tromsø, Norway). Powerful HF radio waves radiated towards the magnetic zenith through a step change in the effective radiated power at frequencies fH near and below the F2-layer critical frequency fₒF2. The EISCAT incoherent scatter radar (930 MHz), co-located with the EISCAT/Heating facility, was utilized for diagnostics of ionospheric modification effects. We calculated the electric field of a powerful HF radio wave near the reflection altitude, taking into account the non-deflective absorption along the propagation path. We determined the conditions for electric field generation and its threshold (minimum) values required for electron density enhancements in a wide altitude range, excitation of Langmuir and ion-acoustic plasma waves under fH~fₒF2 and fH<fₒF2. The possible generation mechanisms for the electron density enhancements above the reflection altitude of the powerful HF radio wave of O- and X-polarization are discussed.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135627210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikhail Krainev, Mikhail Kalinin, Galina Bazilevskaya, Albina Svirzhevskaya, Nikolay Svirzhevsky, Xi Luo, O.P.M. Aslam, F. Shen, M.D. Ngobeni, M.S. Potgieter
{"title":"Manifestation of solar wind corotating interaction regions in GCR intensity variations","authors":"Mikhail Krainev, Mikhail Kalinin, Galina Bazilevskaya, Albina Svirzhevskaya, Nikolay Svirzhevsky, Xi Luo, O.P.M. Aslam, F. Shen, M.D. Ngobeni, M.S. Potgieter","doi":"10.12737/stp-91202302","DOIUrl":"https://doi.org/10.12737/stp-91202302","url":null,"abstract":"The regions of interaction between solar wind streams of different speed, known as corotating interaction regions, form an almost constantly existing structure of the inner heliosphere. Using observational data on the main characteristics of the heliosphere, important for GCR modulation, and the results of 3D MHD modeling of corotating interaction regions, and Monte Carlo simulation of recurrent GCR variations, we analyze the importance of the corotating interaction regions for longitude-averaged characteristics of the heliosphere and GCR propagation, and possible ways for simulating long-term GCR intensity variations with respect to the corotating interaction regions.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135628903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Belousova, Inna Latysheva, Kristina Loschenko, Sergey Olemskoy
{"title":"Current status of the temperature and humidity regime of the troposphere in the Siberian sector in different circulation periods","authors":"Elena Belousova, Inna Latysheva, Kristina Loschenko, Sergey Olemskoy","doi":"10.12737/stp-91202309","DOIUrl":"https://doi.org/10.12737/stp-91202309","url":null,"abstract":"The paper studies the long-term dynamics of air temperature and relative humidity anomaly indices in the surface layer and at different levels of the troposphere in Siberia and neighboring regions (European and Far Eastern sectors). As the main cause of the observed variations in climatic parameters we considered circulation factors, which were taken into account using the typification of macrocirculation processes proposed by B.L. Dzerdzeevsky. Seasonal differences were revealed in the distribution of anomaly indices and the area occupied by anomalies of different signs of annual and monthly mean temperature and relative air humidity, which are most pronounced during circulation periods of increased duration of meridional northern processes in the Siberian sector and in the Northern Hemisphere as a whole. The highest rates of change in the temperature regime in the Siberian sector over recent decades have been observed at the level of the isobaric surface AT–700 hPa (3 km), which affects the advective-dynamic factors of surface cyclo- and frontogenesis, as well as the processes of cloud formation and precipitation. In general, an increase in the heat content of the lower and middle troposphere and a decrease in the relative moisture content near the tropopause can be accompanied by an increase in the amount of the potential energy and convective instability energy reserves and can lead to an increase in climate risks in the Siberian sector.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135677146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Bouclé, Daniel Ribeiro Dos Santos, A. Julien-Vergonjanne
{"title":"Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells","authors":"J. Bouclé, Daniel Ribeiro Dos Santos, A. Julien-Vergonjanne","doi":"10.3390/solar3010011","DOIUrl":"https://doi.org/10.3390/solar3010011","url":null,"abstract":"On one side, the capacity of the world’s photovoltaic (PV) systems is experiencing unprecedented growth; on the other side, the number of connected devices is rapidly increasing due to the development of advanced communication technologies. These fields are not completely independent, and recent studies show that indoor energy harvesting is a great candidate for answering the energy challenges of future generations of telecommunications, namely 5G and 6G, ideal for internet-of-things (IoT) scenarios, i.e., smart homes, smart cities, and smart factories. The emerging PV technologies have shown amazing capabilities for indoor energy harvesting, displaying high power conversion efficiency, good flexibility, and champion-specific powers. Recently, the excellent dynamic performance of PV devices enabled them to be used as data receivers in optical wireless communication (OWC) scenarios, calling forth an innovative system able to simultaneously harvest energy and receive communication data with a single PV device. This article reviews the recent literature devoted to the exploitation of photovoltaic technologies for simultaneous indoor energy harvesting and OWC data reception. This contribution highlights the strong potential of the approach toward the next generation of Green IoT systems and the current challenges that need to be addressed with regard to the physics of solar cells, from laboratory to large-scale applications.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91262596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Jayathunga, J. Weliwita, H. Karunathilake, S. Witharana
{"title":"Economic Feasibility of Thermal Energy Storage-Integrated Concentrating Solar Power Plants","authors":"D. Jayathunga, J. Weliwita, H. Karunathilake, S. Witharana","doi":"10.3390/solar3010010","DOIUrl":"https://doi.org/10.3390/solar3010010","url":null,"abstract":"Concentrating solar power (CSP) is a high-potential renewable energy source that can leverage various thermal applications. CSP plant development has therefore become a global trend. However, the designing of a CSP plant for a given solar resource condition and financial situation is still a work in progress. This study aims to develop a mathematical model to analyze the levelized cost of electricity (LCOE) of Thermal Energy Storage (TES)-integrated CSP plants in such circumstances. The developed model presents an LCOE variation for 18 different CSP configurations with TES incorporated for Rankine, Brayton, and combined power generation cycles, under regular TES materials and nano-enhanced TES materials. The model then recommends the most economical CSP plant arrangement. Within the scope of this study, it was found that the best configuration for electricity generation is a solar power tower with nano-enhanced phase change materials as the latent heat thermal energy storage medium that runs on the combined cycle. This returns an LCOE of 7.63 ct/kWh with a 22.70% CSP plant efficiency. The most favorable option in 50 MW plants is the combined cycle with a regular TES medium, which has an LCOE of 7.72 ct/kWh with a 22.14% CSP plant efficiency.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90173804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Diletto, A. D’Angelo, S. Esposito, Antonio Guglielmo, D. Mirabile Gattia, M. Lanchi
{"title":"Materials Based on Amorphous Al2O3 and Composite W-Al2O3 for Solar Coatings Deposited by High-Rate Sputter Processes","authors":"C. Diletto, A. D’Angelo, S. Esposito, Antonio Guglielmo, D. Mirabile Gattia, M. Lanchi","doi":"10.3390/solar3010009","DOIUrl":"https://doi.org/10.3390/solar3010009","url":null,"abstract":"In parabolic trough technology, the development of thermally and structurally stable solar coatings plays a key role in determining the efficiency, durability, and economic feasibility of tube receivers. A cermet-based solar coating is typically constituted by a thin film stratification, where a multilayer graded cermet is placed between an infrared metallic reflector and an antireflection filter. This work reports the realization of materials based on Al2O3 and W characterized by high structural and chemical stability in vacuum at high temperature, obtained through the optimization of high-deposition-rate processes. Al2O3 material, employed as the antireflection layer, was deposited through a reactive magnetron sputtering process at a high deposition rate. Cermet materials based on W-Al2O3 were deposited and employed as absorber layers by implementing reactive magnetron co-sputtering processes. An investigation into the stability of the realized samples was carried out by means of several material characterization methods before and after the annealing process in vacuum (1 × 10−3 Pa) at high temperature (620 °C). The structural properties of the samples were evaluated using Raman spectroscopy and XRD measurements, revealing a negligible presence of oxides that can compromise the structural stability. Spectrophotometric analysis showed little variations between the deposited and annealed samples, clearly indicating the high structural stability.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89405016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity","authors":"Areti Zindrou, Loukas Belles, Y. Deligiannakis","doi":"10.3390/solar3010008","DOIUrl":"https://doi.org/10.3390/solar3010008","url":null,"abstract":"Cu-oxide nanophases (CuO, Cu2O, Cu0) constitute highly potent nanoplatforms for the development of efficient Artificial Photosynthesis catalysts. The highly reducing conduction band edge of the d-electrons in Cu2O dictates its efficiency towards CO2 reduction under sunlight excitation. In the present review, we discuss aspects interlinking the stability under photocorrosion of the (CuO/Cu2O/Cu0) nanophase equilibria, and performance in H2-production/CO2-reduction. Converging literature evidence shows that, because of photocorrosion, single-phase Cu-oxides would not be favorable to be used as a standalone cathodic catalyst/electrode; however, their heterojunctions and the coupling with proper partner materials is an encouraging approach. Distinction between the role of various factors is required to protect the material from photocorrosion, e.g., use of hole scavengers/electron acceptors, band-gap engineering, nano-facet engineering, and selectivity of CO2-reduction pathways, to name a few possible solutions. In this context, herein we discuss examples and synthesis efforts that aim to clarify the role of interfaces, faces, and phase stability under photocatalytic conditions.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76254091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}