J. Bouclé, Daniel Ribeiro Dos Santos, A. Julien-Vergonjanne
{"title":"利用环境光:利用新兴太阳能电池收集室内能源和数据","authors":"J. Bouclé, Daniel Ribeiro Dos Santos, A. Julien-Vergonjanne","doi":"10.3390/solar3010011","DOIUrl":null,"url":null,"abstract":"On one side, the capacity of the world’s photovoltaic (PV) systems is experiencing unprecedented growth; on the other side, the number of connected devices is rapidly increasing due to the development of advanced communication technologies. These fields are not completely independent, and recent studies show that indoor energy harvesting is a great candidate for answering the energy challenges of future generations of telecommunications, namely 5G and 6G, ideal for internet-of-things (IoT) scenarios, i.e., smart homes, smart cities, and smart factories. The emerging PV technologies have shown amazing capabilities for indoor energy harvesting, displaying high power conversion efficiency, good flexibility, and champion-specific powers. Recently, the excellent dynamic performance of PV devices enabled them to be used as data receivers in optical wireless communication (OWC) scenarios, calling forth an innovative system able to simultaneously harvest energy and receive communication data with a single PV device. This article reviews the recent literature devoted to the exploitation of photovoltaic technologies for simultaneous indoor energy harvesting and OWC data reception. This contribution highlights the strong potential of the approach toward the next generation of Green IoT systems and the current challenges that need to be addressed with regard to the physics of solar cells, from laboratory to large-scale applications.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells\",\"authors\":\"J. Bouclé, Daniel Ribeiro Dos Santos, A. Julien-Vergonjanne\",\"doi\":\"10.3390/solar3010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On one side, the capacity of the world’s photovoltaic (PV) systems is experiencing unprecedented growth; on the other side, the number of connected devices is rapidly increasing due to the development of advanced communication technologies. These fields are not completely independent, and recent studies show that indoor energy harvesting is a great candidate for answering the energy challenges of future generations of telecommunications, namely 5G and 6G, ideal for internet-of-things (IoT) scenarios, i.e., smart homes, smart cities, and smart factories. The emerging PV technologies have shown amazing capabilities for indoor energy harvesting, displaying high power conversion efficiency, good flexibility, and champion-specific powers. Recently, the excellent dynamic performance of PV devices enabled them to be used as data receivers in optical wireless communication (OWC) scenarios, calling forth an innovative system able to simultaneously harvest energy and receive communication data with a single PV device. This article reviews the recent literature devoted to the exploitation of photovoltaic technologies for simultaneous indoor energy harvesting and OWC data reception. This contribution highlights the strong potential of the approach toward the next generation of Green IoT systems and the current challenges that need to be addressed with regard to the physics of solar cells, from laboratory to large-scale applications.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/solar3010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/solar3010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Doing More with Ambient Light: Harvesting Indoor Energy and Data Using Emerging Solar Cells
On one side, the capacity of the world’s photovoltaic (PV) systems is experiencing unprecedented growth; on the other side, the number of connected devices is rapidly increasing due to the development of advanced communication technologies. These fields are not completely independent, and recent studies show that indoor energy harvesting is a great candidate for answering the energy challenges of future generations of telecommunications, namely 5G and 6G, ideal for internet-of-things (IoT) scenarios, i.e., smart homes, smart cities, and smart factories. The emerging PV technologies have shown amazing capabilities for indoor energy harvesting, displaying high power conversion efficiency, good flexibility, and champion-specific powers. Recently, the excellent dynamic performance of PV devices enabled them to be used as data receivers in optical wireless communication (OWC) scenarios, calling forth an innovative system able to simultaneously harvest energy and receive communication data with a single PV device. This article reviews the recent literature devoted to the exploitation of photovoltaic technologies for simultaneous indoor energy harvesting and OWC data reception. This contribution highlights the strong potential of the approach toward the next generation of Green IoT systems and the current challenges that need to be addressed with regard to the physics of solar cells, from laboratory to large-scale applications.