{"title":"Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces","authors":"R. Otero , A.L. Vázquez de Parga , J.M. Gallego","doi":"10.1016/j.surfrep.2017.03.001","DOIUrl":"https://doi.org/10.1016/j.surfrep.2017.03.001","url":null,"abstract":"<div><p>During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"72 3","pages":"Pages 105-145"},"PeriodicalIF":9.8,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2017.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2402371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of molecular beams for kinetic measurements of chemical reactions on solid surfaces","authors":"Francisco Zaera","doi":"10.1016/j.surfrep.2017.02.002","DOIUrl":"https://doi.org/10.1016/j.surfrep.2017.02.002","url":null,"abstract":"<div><p><span><span><span><span>In this review we survey the contributions that molecular beam experiments have provided to our understanding of the dynamics and kinetics of chemical interactions of gas molecules with </span>solid surfaces<span>. First, we describe the experimental details of the different instrumental setups and approaches available for the study of these systems under the ultrahigh vacuum conditions and with the model planar surfaces often used in modern surface-science experiments. Next, a discussion is provided of the most important fundamental aspects of the dynamics of </span></span>chemical adsorption<span><span> that have been elucidated with the help of molecular beam experiments, which include the development of potential energy surfaces, the determination of the different channels for energy exchange between the incoming molecules and the surface, the identification of adsorption precursor states, the understanding of dissociative chemisorption, the determination of the contributions of corrugation, steps, and other structural details of the surface to the </span>adsorption process<span>, the effect to molecular steering, the identification of avenues for assisting adsorption, and the molecular details associated with the kinetics of the uptake of adsorbates as a function of coverage. We follow with a summary of the work directed at the determination of kinetic parameters and mechanistic details of surface reactions associated with catalysis, mostly those promoted by late transition metals. This discussion we initiate with an overview of what has been learned about simple </span></span></span>bimolecular reactions<span> such as the oxidation of CO and H</span></span><sub>2</sub> with O<sub>2</sub><span> and the reaction of CO with NO, and continue with the review of the studies of more complex systems such as the oxidation of alcohols, the conversion of organic acids, the hydrogenation and isomerization<span> of olefins, and the oxidative activation of alkanes under conditions of short contact times. </span></span><span>6 Reactions on supported nanoparticles: Materials gap</span>, <span>7 Low-probability reactions: Pressure gap</span><span> of this review deal with the advances made in the use of molecular beams with more realistic models for catalysis, using surfaces comprised of metal nanoparticles<span> dispersed on the oxide surfaces<span> used as catalyst support and high-flux beams to approach the pressures used in catalysis. The next section deals with the study of systems associated with fields other than catalysis, mainly with the etching and oxidation of semiconductor surfaces and with the chemistry<span> used to grow thin solid films by chemical means (chemical vapor deposition, CVD, or atomic layer deposition, ALD). We end with a personal assessment of the past accomplishments, present state, and future promise of the use of molecular beams for the study of the kinetics of surface reactions relevant to prac","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"72 2","pages":"Pages 59-104"},"PeriodicalIF":9.8,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2017.02.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2484640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hendrik Heinz , Chandrani Pramanik , Ozge Heinz , Yifu Ding , Ratan K. Mishra , Delphine Marchon , Robert J. Flatt , Irina Estrela-Lopis , Jordi Llop , Sergio Moya , Ronald F. Ziolo
{"title":"Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications","authors":"Hendrik Heinz , Chandrani Pramanik , Ozge Heinz , Yifu Ding , Ratan K. Mishra , Delphine Marchon , Robert J. Flatt , Irina Estrela-Lopis , Jordi Llop , Sergio Moya , Ronald F. Ziolo","doi":"10.1016/j.surfrep.2017.02.001","DOIUrl":"https://doi.org/10.1016/j.surfrep.2017.02.001","url":null,"abstract":"<div><p>Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning “surface active agents”, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"72 1","pages":"Pages 1-58"},"PeriodicalIF":9.8,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2017.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2402373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William Taifan , Jean-François Boily , Jonas Baltrusaitis
{"title":"Surface chemistry of carbon dioxide revisited","authors":"William Taifan , Jean-François Boily , Jonas Baltrusaitis","doi":"10.1016/j.surfrep.2016.09.001","DOIUrl":"https://doi.org/10.1016/j.surfrep.2016.09.001","url":null,"abstract":"<div><p>This review discusses modern developments in CO<sub>2</sub><span> surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225–273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO</span><sub>2</sub><span> interactions thereon. While UHV spectroscopy has routinely been applied for CO</span><sub>2</sub> gas–solid interface analysis, the present work goes further by describing surface–CO<sub>2</sub> interactions under elevated CO<sub>2</sub><span> pressure on non-oxide surfaces, such as zeolites<span>, sulfides, carbides<span> and nitrides. Furthermore, it describes additional salient </span></span></span><em>in situ</em> techniques relevant to the resolution of the interfacial chemistry of CO<sub>2</sub><span>, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid–water vapor, liquid–solid and liquid–liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO</span><sub>2</sub> sequestration.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 4","pages":"Pages 595-671"},"PeriodicalIF":9.8,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.09.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2424390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Positrons in surface physics","authors":"Christoph Hugenschmidt","doi":"10.1016/j.surfrep.2016.09.002","DOIUrl":"https://doi.org/10.1016/j.surfrep.2016.09.002","url":null,"abstract":"<div><p>Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron<span><span> beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for </span>elemental analysis<span>. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 4","pages":"Pages 547-594"},"PeriodicalIF":9.8,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.09.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3263787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ákos Kukovecz , Krisztián Kordás , János Kiss , Zoltán Kónya
{"title":"Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires","authors":"Ákos Kukovecz , Krisztián Kordás , János Kiss , Zoltán Kónya","doi":"10.1016/j.surfrep.2016.06.001","DOIUrl":"https://doi.org/10.1016/j.surfrep.2016.06.001","url":null,"abstract":"<div><p><span><span>Titanates<span> are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning </span></span>crystallinity<span>, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200</span></span> <!-->nm in length and 15<!--> <span>nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500</span> <!-->nm and 30–60<!--> <span><span><span>nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. </span>Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, </span>photovoltaic and energy storage applications, therefore, these fields are also reviewed.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 3","pages":"Pages 473-546"},"PeriodicalIF":9.8,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.06.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3263788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Leroy , Ł. Borowik , F. Cheynis , Y. Almadori , S. Curiotto , M. Trautmann , J.C. Barbé , P. Müller
{"title":"How to control solid state dewetting: A short review","authors":"F. Leroy , Ł. Borowik , F. Cheynis , Y. Almadori , S. Curiotto , M. Trautmann , J.C. Barbé , P. Müller","doi":"10.1016/j.surfrep.2016.03.002","DOIUrl":"https://doi.org/10.1016/j.surfrep.2016.03.002","url":null,"abstract":"<div><p>In the past decade there have been many theoretical and experimental efforts to study the mechanisms of solid state dewetting, that means the spontaneous agglomeration of a thin solid film on a substrate into an assembly of 3D islands. The dewetting studies of solid films on solid substrates have not yet reached the degree of maturity achieved for liquids but there is now enough experimental data to consider the possibility of a future “dewetting engineering”. By dewetting engineering we mean all the ways to tune and/or control the kinetics of dewetting as well as the morphology of the final dewetted state. The ultimate goal is to avoid dewetting when it complicates the fabrication of thin film-based devices or to use it for the spontaneous production of an assembly of nanoscaled islands on solid substrates.</p><p>For this purpose we review the different parameters that influence the dewetting then illustrate how the dewetted state may be tuned by varying the thickness of the film, the annealing temperature, or the state of strain in the film. Moreover, adsorbed or absorbed species (by deposition or ionic impingement/ion bombardment) may modify the surface properties of the film or the mobility properties of the contact line film/substrate and thus the dewetting properties. Anisotropic properties of the film may also be used to initiate the dewetting from perfectly oriented edge fronts, leading to highly ordered 3D islands. New approaches using substrate pre-patterning or film patterning are very promising to achieve the dewetting engineering.</p><p><span>Ideal systems for studying solid state dewetting are single crystalline films deposited or bonded on amorphous substrates, so that, among the numerous dewetting systems reported in the literature, ultra-thin crystalline silicon-on-insulator (SOI) film (a Si film bonded on an amorphous SiO</span><sub>2</sub><span> substrate) is considered as a model system for studying how to control solid state dewetting. Other systems, as Ni epitaxially grown on MgO, are also used to illustrate the different approaches for a “dewetting engineering”.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 2","pages":"Pages 391-409"},"PeriodicalIF":9.8,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.03.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1828694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis","authors":"Junling Lu , Jeffrey W. Elam , Peter C Stair","doi":"10.1016/j.surfrep.2016.03.003","DOIUrl":"https://doi.org/10.1016/j.surfrep.2016.03.003","url":null,"abstract":"<div><p><span>Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to </span>chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle “bottom-up” approach for nanostructuring supported catalysts with near atomic precision.</p><p><span>In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials<span> for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles<span> by ALD is emphasized. The resulting metal catalysts<span><span> with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface </span>chemistry<span> and growth behavior of metal ALD on metal surfaces<span><span>, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle “bottom up” construction of bimetallic (or multiple components) nanoparticles with near atomic precision on supports by ALD is illustrated. Applying </span>metal oxide ALD over metal nanoparticles can be used to precisely synthesize nanostructured metal catalysts. In this part, the surface chemistry of Al</span></span></span></span></span></span><sub>2</sub>O<sub>3</sub><span> ALD on metals is specifically reviewed. Next, we discuss the methods of tailoring the catalytic performance of metal catalysts including activity, selectivity and stability, through selective blocking of the low-coordination sites of metal nanoparticles, the confinement effect, and the formation of new metal-oxide interfaces. Synthesis of supported metal oxide catalysts with high dispersions and “bottom up” nanostructured photocatalytic architectures are also included. Therein, the surface chemistry and morphology of oxide ALD on oxides and carbon materials as well as their catalytic ","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 2","pages":"Pages 410-472"},"PeriodicalIF":9.8,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.03.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3263790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The nature of the air-cleaved mica surface","authors":"Hugo K. Christenson , Neil H. Thomson","doi":"10.1016/j.surfrep.2016.03.001","DOIUrl":"https://doi.org/10.1016/j.surfrep.2016.03.001","url":null,"abstract":"<div><p><span>The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM<span> imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO</span></span><sub>2</sub> and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K<sub>2</sub>CO<sub>3</sub> per nm<sup>2</sup>, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K<sub>2</sub>CO<sub>3</sub><span>, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion<span><span>, electrolyte effects on surface conductivity, and two-dimensional </span>crystal nucleation.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 2","pages":"Pages 367-390"},"PeriodicalIF":9.8,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2345092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review","authors":"M.A. Khan, M.A. Nadeem, H. Idriss","doi":"10.1016/j.surfrep.2016.01.001","DOIUrl":"https://doi.org/10.1016/j.surfrep.2016.01.001","url":null,"abstract":"<div><p><span><span>The current efficiency of various photocatalytic processes is limited by the recombination of photogenerated electron–hole pairs in the photocatalyst as well as the back-reaction of intermediate species. This review concentrates on the use of </span>ferroelectric polarization to mitigate electron–hole recombination and back-reactions and therefore improve photochemical reactivity. Ferroelectric materials are considered as wide band gap polarizable semiconductors. Depending on the surface polarization, different regions of the surface experience different extents of band bending and promote different carriers to move to spatially different locations. This can lead to some interesting interactions at the surface such as spatially selective adsorption and surface </span>redox reactions<span>. This introductory review covers the fundamental properties of ferroelectric materials, effect of an internal electric field/polarization on charge carrier separation, effect of the polarization on the surface photochemistry<span> and reviews the work done on the use of these ferroelectric materials for photocatalytic applications such as dye degradation and water splitting. The manipulation of photogenerated charge carriers through an internal electric field/surface polarization is a promising strategy for the design of improved photocatalysts.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 1","pages":"Pages 1-31"},"PeriodicalIF":9.8,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.01.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2345093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}