{"title":"Radical surface chemistry: Augmentation of reactivity by radicals at aqueous interfaces","authors":"Kurt W. Kolasinski","doi":"10.1016/j.surfrep.2025.100668","DOIUrl":"10.1016/j.surfrep.2025.100668","url":null,"abstract":"<div><div>Cooperativity and non-additive interactions play central roles in the unusual and surprising behavior of water. A host of reactive oxygen species (ROS) including the hydroxyl radical <sup>•</sup>OH, superoxide radical anion (O<sub>2</sub><sup>−•</sup>), hydroperoxide radical (HO<sub>2</sub><sup>•</sup>), singlet oxygen (<sup>1</sup>O<sub>2</sub>), and also the more recently discussed water radical cation/anion pair (H<sub>2</sub>O<sup>+•</sup>/H<sub>2</sub>O<sup>−•</sup>) all add to the more familiar acid/base chemical pathways tread by hydronium (H<sub>3</sub>O<sup>+</sup>) and hydroxide (OH<sup>−</sup>). This is amplified in surface science because interfacial water – whether found at the gas/liquid, gas/solid, or liquid/solid interface – poses yet more unique behavior. This review explores the unexpected chemistry associated with ambient temperature aqueous interfaces much of which is mediated not only by ions and neutrals as expected, but also radical species. Water microdroplets catalyze numerous reactions and can also support simultaneous oxidation and reduction reactions through the production of reactive intermediates that owe their existence to the unique influence of the air/water or oil/water interface. Interfacial water influences and is influenced by the ubiquitous phenomenon of contact electrification, a manifestation of spontaneous symmetry breaking. The mechanisms of chemistry not only on and in microdroplets but also at the gas/solid and liquid/solid interfaces rely on a broad set of chemical transformations mediated by radicals. Furthermore, because aqueous macro- and micro-interfaces are ubiquitous on Earth, we find that water radical-mediated chemistry has applications to atmospheric chemistry, geochemistry, mineral weathering, pre-biotic chemistry, enhanced enzyme performance, wastewater remediation, public health, mechanochemistry, and potentially novel routes to pharmaceuticals.</div></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"80 4","pages":"Article 100668"},"PeriodicalIF":8.7,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microscopic insights into the initial oxidation process of single crystalline platinum group metal surfaces: From subsurface oxygen, a ghost species, towards surface oxide","authors":"Herbert Over","doi":"10.1016/j.surfrep.2025.100659","DOIUrl":"10.1016/j.surfrep.2025.100659","url":null,"abstract":"<div><div>In this review, the initial oxidation process of low-index surfaces of single-crystalline platinum group metals (PGMs: Ru, Rh, Pd, Ir, and Pt) is discussed in detail at the atomic level, involving several types of oxygen species: chemisorbed O, subsurface O, dissolved O, oxidic O. The oxidation of PGMs begins only when the surface of the PGM is saturated with chemisorbed O. Oxygen penetration into the metal is a critical next step in surface oxide formation, which can occur either through the step edge or directly through the terrace, depending on the oxidants chosen (O<sub>2</sub>, NO<sub>2</sub>, atomic O, and ozone O<sub>3</sub>). However, subsurface oxygen (oxygen directly below the top metal layer) does not form a separate phase in PGM. Instead, a surface oxide consisting of a single O-Me-O trilayer nucleates and grows (heterogeneous growth mode). The oxidation process is a nonlinear process with self-acceleration and passivation behavior, where many processes occur in parallel and in sequence, so that patterning can occur on different length scales. For this reason, oxidation studies must be performed at both the atomic and mesoscale using powerful combinations of surface science techniques such as scanning tunneling microscopy (STM) and low-energy electron microscopy (LEEM).</div></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"80 2","pages":"Article 100659"},"PeriodicalIF":8.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingyue Wang , Jia Wang , Haoxuan Ding , Minghu Pan
{"title":"Recent advances of two-dimensional organic topological insulators: surface synthesis and characterization","authors":"Xingyue Wang , Jia Wang , Haoxuan Ding , Minghu Pan","doi":"10.1016/j.surfrep.2025.100660","DOIUrl":"10.1016/j.surfrep.2025.100660","url":null,"abstract":"<div><div>Two-dimensional (2D) organic topological insulators (OTIs) have garnered increasing interest due to their SOC-induced band gaps and topological boundary states that connect the valence and conduction bands. Experimental efforts utilizing substrate-mediated self-assembly have successfully fabricated 2D organic frameworks with various lattice symmetries. The vast diversity of organic molecules and the wide range of possible coordination interactions between organic ligands and metal atoms have led to significant attention toward these frameworks. However, the experimental realization of large-scale, ordered 2D OTIs remains challenging. In particular, the synthesis of monolayer 2D OTIs featuring nearly flat bands due to destructive quantum interference near the Fermi level has been elusive. With advancements in synthetic chemistry and on-surface synthesis techniques, the number of theoretically-predicted 2D OTIs has been gradually experimentally realized. This review provides a comprehensive summary of recent advances in the synthesis and characterization of 2D OTIs, with a particular focus on the experimental identification of nontrivial flat bands. Finally, we discuss future research directions and the challenges associated with characterizing these novel quantum materials.</div></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"80 2","pages":"Article 100660"},"PeriodicalIF":8.2,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144713129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancements in secondary and backscattered electron energy spectra and yields analysis: From theory to applications","authors":"Simone Taioli, Maurizio Dapor","doi":"10.1016/j.surfrep.2024.100646","DOIUrl":"10.1016/j.surfrep.2024.100646","url":null,"abstract":"<div><div>Over the past decade, experimental microscopy and spectroscopy have made significant progress in the study of the morphological, optical, electronic and transport properties of materials. These developments include higher spatial resolution, shorter acquisition times, more efficient monochromators and electron analysers, improved contrast imaging and advancements in sample preparation techniques. These advances have driven the need for more accurate theoretical descriptions and predictions of material properties. Computer simulations based on first principles and Monte Carlo methods have emerged as a rapidly growing field for modelling the interaction of charged particles, such as electron, proton and ion beams, with various systems, such as slabs, nanostructures and crystals. This report delves into the theoretical and computational approaches to modelling the physico-chemical mechanisms that occur when charged beams interact with a medium. These mechanisms encompass single and collective electronic excitation, ionisation of the target atoms and the generation of a secondary electron cascade that deposits energy into the irradiated material. We show that the combined application of ab initio methods, which are able to model the dynamics of interacting many-fermion systems, and Monte Carlo methods, which capture statistical fluctuations in energy loss mechanisms by random sampling, proves to be an optimal strategy for the accurate description of charge transport in solids. This joint quantitative approach enables the theoretical interpretation of excitation, loss and secondary electron spectra, the analysis of the chemical composition and dielectric properties of solids and contributes to our understanding of irradiation-induced damage in materials, including those of biological significance.</div></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"80 1","pages":"Article 100646"},"PeriodicalIF":8.2,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sum frequency generation (SFG) spectroscopy at surfaces and interfaces: Adsorbate structure and molecular bond orientation","authors":"Xia Li, Günther Rupprechter","doi":"10.1016/j.surfrep.2024.100645","DOIUrl":"10.1016/j.surfrep.2024.100645","url":null,"abstract":"<div><div>Infrared (IR)-visible (Vis) sum frequency generation (SFG) is a second-order nonlinear optical process which is forbidden in centrosymmetric bulk media or isotropic phases, but allowed at (open) surfaces or (buried) interfaces where the inversion symmetry is broken. SFG spectroscopy is thus inherently surface- or interface-specific, providing information about the structure, orientation, surface number density, chirality, and dynamics of molecules, provided the system of interest is accessible by light. This review illustrates basic SFG concepts, theory, operation modes (e.g., frequency-domain, broadband, homodyne/heterodyne, time-resolved), and recent extensions and developments of SFG (e.g., doubly resonant, plasmon-enhanced, chiral, microscopy). To illustrate the wide range of SFG applications, selected case studies discuss the characterization of molecular structure and bond orientation at solid-gas, solid-liquid, liquid-air, liquid-liquid, and solid-solid interfaces.</div></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"79 4","pages":"Article 100645"},"PeriodicalIF":8.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143167811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hexagonal boron nitride on metal surfaces as a support and template","authors":"","doi":"10.1016/j.surfrep.2024.100637","DOIUrl":"10.1016/j.surfrep.2024.100637","url":null,"abstract":"<div><p>The synthesis and characterization of two dimensional materials are in the focus of nanomaterial and surface science, heterogeneous catalytic and nanoelectronic research laying the basis for various technological applications. Hexagonal boron nitride (h-BN) is an important member of 3D and reduced dimensional materials. Atomically clean sp<sup>2</sup>-hybridized 2D nano-layers can be grown on various metal supports by different chemical and physical vapor deposition techniques. In case of a significant lattice mismatch and a strong interaction at the h-BN/metal interface, a periodically undulating monolayer - a so-called “moirè structure” - is formed. In the present review, we address some important characteristics of h-BN prepared on several metal surfaces, and we focus on its application as a template for individual atoms, metal clusters and molecules. Moreover, several experimental findings are collected about the features and applications of monolayer h-BN nanosheets as supporting materials. We highlight the results of recent surface science studies, which emphasize the unique role of h-BN including nanomeshes in characteristic adsorption properties, stability and catalytic activity. The characterization of few layer and defective h-BN involving their catalytic applications are also the subject of the present review. We present a comprehensive overview on the electronic and vibrational states of nanoparticles (covered by adsorbates, as well) monitored by surface spectroscopy tools, e.g. XPS, ARPES, UPS, LEIS, AES, STS and HREELS. We also elaborate on the structural and morphological information of h-BN nanoobjects obtained by scanning probe microscopy (SPM). It is also highlighted that density functional theory (DFT) is considered as a very important complementary technique contributing to the better understanding of experimental results. Beside updated recollection of key findings, we outline the present and future research directions of 2D materials and their heterostructures including h-BN-based systems.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"79 3","pages":"Article 100637"},"PeriodicalIF":8.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167572924000165/pdfft?md5=f6a1e280c0f20928280077b2553c9f20&pid=1-s2.0-S0167572924000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141409783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"X-ray photoelectron spectroscopy of epitaxial films and heterostructures","authors":"Scott A. Chambers","doi":"10.1016/j.surfrep.2024.100638","DOIUrl":"10.1016/j.surfrep.2024.100638","url":null,"abstract":"<div><p>X-ray photoelectron spectroscopy is a powerful experimental technique that yields invaluable information on a range of phenomena that occur in solids, liquids, and gasses. The binding energy and shape of a photoemission peak is sensitive not only to the atomic number, valence and orbital from which the electron is ejected, but also to complex many-body effects that accompany photoemission. Provided the influences of these different drivers of spectral line shapes can be disentangled, a great deal can be learned about the electronic structure of materials of interest. In addition to these largely local effects, the long-range electrostatic environment and resulting electric potential at the emitting atom also have a direct effect on the measured binding energies. This fact opens the door to extracting information about the dependence of the valence and conduction band minima on depth below the surface, which in turn allows both vertical and lateral electrical transport data to be better understood. One purpose of this Report is to summarize how the different physical forces described above impact the spectral properties of complex oxide epitaxial films. This class of materials typically incorporates transition metal cations in different valences and such ions exhibit the most complex core-level spectra of any on the periodic chart. A second purpose is to show how a comprehensive understanding of local physical effects in x-ray photoemission allows one to model spectra and extract from core-level line shapes and binding energies detailed information on built-in potentials and band edge discontinuities in heterostructures involving complex oxides.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"79 3","pages":"Article 100638"},"PeriodicalIF":8.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Pfnür , C. Tegenkamp , S. Sanna , E. Jeckelmann , M. Horn-von Hoegen , U. Bovensiepen , N. Esser , W.G. Schmidt , M. Dähne , S. Wippermann , F. Bechstedt , M. Bode , R. Claessen , R. Ernstorfer , C. Hogan , M. Ligges , A. Pucci , J. Schäfer , E. Speiser , M. Wolf , J. Wollschläger
{"title":"Atomic wires on substrates: Physics between one and two dimensions","authors":"H. Pfnür , C. Tegenkamp , S. Sanna , E. Jeckelmann , M. Horn-von Hoegen , U. Bovensiepen , N. Esser , W.G. Schmidt , M. Dähne , S. Wippermann , F. Bechstedt , M. Bode , R. Claessen , R. Ernstorfer , C. Hogan , M. Ligges , A. Pucci , J. Schäfer , E. Speiser , M. Wolf , J. Wollschläger","doi":"10.1016/j.surfrep.2024.100629","DOIUrl":"10.1016/j.surfrep.2024.100629","url":null,"abstract":"<div><p>Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one-dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"79 2","pages":"Article 100629"},"PeriodicalIF":9.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167572924000086/pdfft?md5=3f93565d3c35692737d64c9df36caa55&pid=1-s2.0-S0167572924000086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niklas Nilius , Jacek Goniakowski , Claudine Noguera
{"title":"A surface science view onto cuprous oxide: Growth, termination, electronic structure and optical response","authors":"Niklas Nilius , Jacek Goniakowski , Claudine Noguera","doi":"10.1016/j.surfrep.2024.100622","DOIUrl":"https://doi.org/10.1016/j.surfrep.2024.100622","url":null,"abstract":"<div><p>The oxides of copper have attracted the attention of scientists already for more than hundred years. This fascination is fueled by many outstanding properties of the material, for example, a semiconducting behavior that led to the first diode fabricated in electronics, a pronounced excitonic response that stimulated an intense search for Bose-Einstein condensation, and a pivotal role in unconventional superconductivity. Despite this central position in past and present research activities, many aspects of copper oxides are not sufficiently understood to date. This applies in particular to their surface characteristics, where even fundamental questions, such as the energetically favored termination of low-index Cu<sub>2</sub>O and CuO planes, are still subject of debates. This review aims at addressing these deficiencies by compiling state-of-the-art knowledge of the surface science of copper oxides, and especially of cuprous oxide.</p><p>A first focus of the article lies in the oxidation characteristic of copper as a means to prepare well-defined oxide surfaces. It demonstrates that low-pressure oxidation only results in the formation of ultrathin precursor oxides, with properties deviating substantially from those of the bulk material. Consequently, reliable pathways to produce high-quality and bulk-compatible surfaces, either of Cu<sub>2</sub>O thin films or bulk crystals, are presented. The following chapter provides a comprehensive introduction into the atomic structure of the most relevant Cu<sub>2</sub>O surfaces, i.e., the (111), (100) and (110) planes. It gives an overview of important diffraction and microscopy experiments on the most accessible Cu<sub>2</sub>O terminations, and complements this with state-of-the-art theoretical studies to develop corresponding atomistic models. The chapter closes by presenting the atomic configurations of the most relevant Cu<sub>2</sub>O surfaces at given thermodynamic conditions.</p><p>Chapter four develops a surface-science view onto the unique optical response of cuprous oxide. After introducing the well-known bulk behavior, it highlights how optical properties can be probed on surfaces with high spectral and spatial resolution. The chapter discusses how optical near-field techniques are employed to analyze oxide excitons and their trapping at lattice defects in real-space experiments. The last chapter summarizes efforts to alter intrinsic Cu<sub>2</sub>O properties, e.g., the p-type conductivity, the width of the band gap and the exciton trapping and recombination behavior, via doping. It illuminates this topic from an experimental and theoretical viewpoint and highlights several unsolved questions related to the topic.</p><p>Despite considerable efforts, this review can only present the current state of knowledge on Cu<sub>2</sub>O surfaces, a subject that continuously advances due to new scientific findings and innovations. We nonetheless hope that it provides a comprehensive and topical ","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"79 1","pages":"Article 100622"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140328497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vibrational spectroscopy of geochemical interfaces","authors":"Stefan M. Piontek , Eric Borguet","doi":"10.1016/j.surfrep.2023.100606","DOIUrl":"10.1016/j.surfrep.2023.100606","url":null,"abstract":"<div><div><span>Mineral/aqueous interfaces are ubiquitous in geochemistry and are employed for applications spanning catalysis to CO</span><sub>2</sub><span> sequestration. Small changes in interface morphology have been shown to induce large changes in ion mobility<span>, surface charge, and solvent orientation, which affect the function of these geochemical interfaces. While our ability to probe buried interfaces has been advanced by surface specific and sensitive vibrational spectroscopies, the overlapping response of surface groups and water has made complete structural interpretations of these systems difficult. We believe that by highlighting recent experimental and computational works further progress can be made.</span></span></div><div>This review follows the evolution and current understanding of solvent and surface structure near SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3,</sub> CaF<sub>2</sub>, and TiO<sub>2</sub><span><span>/aqueous interfaces generated by modern spectroscopic and computational techniques. By comparing information gathered from a range of vibrational spectroscopies and simulations progress can be made in the following fields including and not limited to; geochemistry, industrial/petroleum chemistry, </span>interface science<span>, vibrational spectroscopy, computational chemistry, and materials science.</span></span></div></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"78 4","pages":"Article 100606"},"PeriodicalIF":8.2,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44025777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}