Solar Energy最新文献

筛选
英文 中文
Recent progress on perovskite based indoor photovoltaics: Challenges and commercialization 基于过氧化物的室内光伏技术的最新进展:挑战与商业化
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-02 DOI: 10.1016/j.solener.2024.113049
Priti Kumari , Seelam Prasanthkumar , Lingamallu Giribabu
{"title":"Recent progress on perovskite based indoor photovoltaics: Challenges and commercialization","authors":"Priti Kumari ,&nbsp;Seelam Prasanthkumar ,&nbsp;Lingamallu Giribabu","doi":"10.1016/j.solener.2024.113049","DOIUrl":"10.1016/j.solener.2024.113049","url":null,"abstract":"<div><div>Indoor photovoltaics has received much attention in recent years mainly because of significances in human daily life for small scale device applications such as Internet of Things (IoT), remote sensors, actuators, and communication devices. Among various generations of photovoltaics, perovskite solar cells (PSCs) are found to be best suitable for indoor applications due to their easy to fabricate both on glass and flexible substrate, low-cost process and dispenses efficient power conversion efficiencies. PSCs have crossed the device efficiency of 25 % under AM 1.5G conditions and crossed the power conversion efficiency of 40 % under low-light/artificial light conditions. Therefore, there will be lot of attention on indoor perovskite photovoltaics (iPPV) in recent times towards many small device applications. The main focus of the review is to discuss recent developments in iPPVs for lead and lead-free perovskites, challenges, future direction and market opportunities.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113049"},"PeriodicalIF":6.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing spherical solar still thermal performance with built-in baffles, reflectors, and nanoparticle phase change material 利用内置挡板、反射器和纳米颗粒相变材料提高球形太阳能电池的热性能
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-02 DOI: 10.1016/j.solener.2024.113060
Mamdouh I. Elamy , Fadl A. Essa , Suha A. Mohammed , Wissam H. Alawee , Ali Basem , A.S. Abdullah , Hasan Sh. Majdi , Hayder A. Dhahad , Z.M. Omara , Y. Gamiel
{"title":"Enhancing spherical solar still thermal performance with built-in baffles, reflectors, and nanoparticle phase change material","authors":"Mamdouh I. Elamy ,&nbsp;Fadl A. Essa ,&nbsp;Suha A. Mohammed ,&nbsp;Wissam H. Alawee ,&nbsp;Ali Basem ,&nbsp;A.S. Abdullah ,&nbsp;Hasan Sh. Majdi ,&nbsp;Hayder A. Dhahad ,&nbsp;Z.M. Omara ,&nbsp;Y. Gamiel","doi":"10.1016/j.solener.2024.113060","DOIUrl":"10.1016/j.solener.2024.113060","url":null,"abstract":"<div><div>This study addresses the challenge of enhancing the spherical solar still (SPSS) performance by introducing a modified cords wick spherical solar still (CWSPSS) design. This design incorporates an additional absorber inside the SPSS with 25 wick cords attached to the upper absorber. The research also investigates the impact of installing square barriers at the base of the CWSPSS, both with and without mirrors. Furthermore, the impact of using a fan with an exterior condenser and nanoparticle-enhanced Phase Change Materials (PCM) was tested. The findings indicated that the production of the CWSPSS with baffles and reflectors increased by 165 % and 205 %, respectively. Additionally, the productivity of the CWSPSS with PCM and fan was enhanced by 243 % and 259 %, respectively. The highest efficiency achieved was 67.5 % for the CWSPSS with a fan. Ultimately, the findings demonstrate a significant 50 % reduction in production costs, positioning this innovative design as a promising solution for cost-effective freshwater production where there is plenty of sea water.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113060"},"PeriodicalIF":6.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inorganic Zn2SnO4 electron transport layer in single-junction perovskite solar cells achieving highly efficient performance exceeding 32.85 % 单结过氧化物太阳能电池中的无机 Zn2SnO4 电子传输层实现了超过 32.85 % 的高效性能
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-01 DOI: 10.1016/j.solener.2024.113048
Mohammed Benali Kanoun , Mousaab Belarbi , Souraya Goumri-Said
{"title":"Inorganic Zn2SnO4 electron transport layer in single-junction perovskite solar cells achieving highly efficient performance exceeding 32.85 %","authors":"Mohammed Benali Kanoun ,&nbsp;Mousaab Belarbi ,&nbsp;Souraya Goumri-Said","doi":"10.1016/j.solener.2024.113048","DOIUrl":"10.1016/j.solener.2024.113048","url":null,"abstract":"<div><div>The performance of perovskite solar cells heavily relies on the optoelectronic characteristics of the electron transport layer (ETL). In this study, we use the first-principles methods, based on hybrid density functional theory with spin–orbit coupling, to examine the structural, electronic, and optical properties of Zn<sub>2</sub>SnO<sub>4</sub> as promising candidate for the ETL in perovskite solar cells. Within the scope of structural properties, the lattice constants, bond lengths, and energy of formation are computed, showing a stable prototype structure. Our analysis of the electronic structures demonstrates that Zn<sub>2</sub>SnO<sub>4</sub> has a wide direct band gap, which promotes efficient carrier extraction and correlates well with experimental measurements. Furthermore, the effective masses, dielectric constant, absorption coefficient, and exciton binding energy are studied. Additionally, we examine the photovoltaic efficiency of single-junction solar cells utilizing Zn<sub>2</sub>SnO<sub>4</sub> as ETL in a standard planar device structure. The optimal cell efficiency obtained from the numerical simulation for the FTO/Zn<sub>2</sub>SnO<sub>4</sub>/Perovskite/Spiro-MeOTAD/Au configuration is determined to be ∼32.85 %. Furthermore, we conduct a comparative analysis of the performance of perovskite solar cell device with SnO<sub>2</sub> ETL. Our findings reveal that Zn<sub>2</sub>SnO<sub>4</sub> exhibits superior cell efficiency compared to its SnO<sub>2</sub> counterpart. These results align well with previously reported experimental observations and underscore the efficacy of combining first-principles calculations with conventional device simulations for evaluating perovskite solar cell performance reliably.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113048"},"PeriodicalIF":6.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drying kinetics, energy, statistical, economic, and proximate analysis of a greenhouse dryer using different glazing materials for Coccinia grandis drying 使用不同玻璃材料的温室烘干机烘干可可豆的动力学、能量、统计、经济和近似分析
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-10-31 DOI: 10.1016/j.solener.2024.113047
S. Rajesh , S. Sekar , S.D. Sekar , S. Madhankumar
{"title":"Drying kinetics, energy, statistical, economic, and proximate analysis of a greenhouse dryer using different glazing materials for Coccinia grandis drying","authors":"S. Rajesh ,&nbsp;S. Sekar ,&nbsp;S.D. Sekar ,&nbsp;S. Madhankumar","doi":"10.1016/j.solener.2024.113047","DOIUrl":"10.1016/j.solener.2024.113047","url":null,"abstract":"<div><div>In this study, ivy gourd (<em>Coccinia grandis</em>) was subjected to various drying processes, including Open Sun Drying (OSD) and Greenhouse Dryer (GD), using different glazing materials such as Ultraviolet Polyethylene (UVP) and Drip Lock (DL) sheets in both passive and active modes. The dryer’s performance was assessed based on drying kinetics, energy, statistical, economic, and proximate analysis. In active mode, the DL sheet GD (DLGD) significantly reduced the moisture content of ivy gourd from 92.8 % to 10 % within 5 days, outperforming the UVP sheet GD (UVPGD), which required 6 days. In passive mode, the DLGD and UVPGD achieved the same result in 7 and 8 days, respectively, while OSD required 9 days for comparable moisture reduction. The dryer efficiency for UVPGD was 27.07 % in passive mode and 36.09 % in active mode. In contrast, the DLGD exhibited higher efficiencies of 30.93 % in passive mode and 43.31 % in active mode. Eleven mathematical models were considered to characterize the drying process of ivy gourd, with the two-term exponential model being the best fit for UVPGD and DLGD in active mode. The Prakash and Kumar model was found to be optimal for UVPGD and DLGD in passive mode. Economic analysis demonstrated that UVPGD in passive mode had the lowest capital cost and a payback period of 0.2985 years, whereas DLGD in active mode maintained payback periods below 0.5 years, indicating rapid cost recovery. Proximate analysis revealed that DLGD in active mode retained more carbohydrates, with percentages 8.3 %, 3.94 %, 3.29 %, and 2.17 % higher than OSD, UVPGD in passive mode, UVPGD in active mode, and DLGD in passive mode, respectively. Calcium retention was greater in active mode, while Vitamin C retention was higher in passive mode. The study identifies DLGD as the top performer across all modes, making it a recommended choice for commercial drying applications.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Intra-Hour photovoltaic power generation prediction method for flexible building energy systems and its application in operation scheduling strategy 灵活建筑能源系统的小时内光伏发电预测方法及其在运行调度策略中的应用
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-10-31 DOI: 10.1016/j.solener.2024.113031
Yongyi Su , Weirong Zhang , Gaofeng Deng , Zhichao Wang
{"title":"An Intra-Hour photovoltaic power generation prediction method for flexible building energy systems and its application in operation scheduling strategy","authors":"Yongyi Su ,&nbsp;Weirong Zhang ,&nbsp;Gaofeng Deng ,&nbsp;Zhichao Wang","doi":"10.1016/j.solener.2024.113031","DOIUrl":"10.1016/j.solener.2024.113031","url":null,"abstract":"<div><div>Building flexible energy systems (BFES) can be enhanced by introducing storage batteries. Providing timely scheduling strategies for flexible resources can improve the system’s energy utilization. BFES’s scheduling strategies are often adjusted based on Intra-hour photovoltaic(PV) output. Intra-hour PV power generation can be predicted by analyzing cloud imagery data; however, this method does not meet the economic requirements of BFES due to its cost and instrumentation. Therefore, this study proposes a low-cost method for intra-hour PV power generation prediction (IHP) for BFES and explores the impact of integrating this approach into BFES on the rate of renewable energy consumption. This method combined low-quality sky images captured using fisheye cameras installed above buildings with historical electricity generation data and employed convolutional neural networks. The feasibility of the IHP method and the advantages of incorporating it into BFES were verified by applying it to a building equipped with PV devices in Changping, Beijing. The performance of the proposed model algorithm was compared with those of existing models. The proposed method achieved average prediction accuracy improvements of 25.1 and 12.5 % compared with existing models under sunny and cloudy conditions, respectively. Under clear conditions, the model could predict the PV power generation within the next 25 min, whereas under cloudy conditions, the model could predict the power generation within 10 min. In addition, integrating IHP into the scheduling strategy of BFES can improve the renewable energy consumption rate by 44.4 % on the original basis.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113031"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative experimental study on the hydrodynamic performance of two floating solar structures with a breakwater in waves 带防波堤的两种浮动太阳能结构在波浪中的水动力性能对比实验研究
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-10-31 DOI: 10.1016/j.solener.2024.113029
Yifeng Yang , Chenhao Mi , Binjian Ou , Anson Wong , John Gordon Duffy , Tim Wood , IKAP Utama , Wenchuang Chen , Luofeng Huang
{"title":"A comparative experimental study on the hydrodynamic performance of two floating solar structures with a breakwater in waves","authors":"Yifeng Yang ,&nbsp;Chenhao Mi ,&nbsp;Binjian Ou ,&nbsp;Anson Wong ,&nbsp;John Gordon Duffy ,&nbsp;Tim Wood ,&nbsp;IKAP Utama ,&nbsp;Wenchuang Chen ,&nbsp;Luofeng Huang","doi":"10.1016/j.solener.2024.113029","DOIUrl":"10.1016/j.solener.2024.113029","url":null,"abstract":"<div><div>Floating Photovoltaic (FPV) is considered as a highly promising clean energy solution. In recent years, FPV has been widely deployed in calm water around the world. However, to find available space for further expansion, FPV needs to be deployed in seas whilst the oceanic waves significantly influence the structural stability and energy performance. On one hand, wave loads may cause structural fatigue and damage. On the other hand, wave-induced rotations of a floating solar panel will vary its tilt angle to the sunlight and thus affect the power output. To explore the new research field of ocean-based FPV, this work first designed a novel catamaran FPV floater with a four-point mooring system. Comparative experiments were then conducted in a wave tank to compare its seakeeping ability with a conventional flat-plate floater. Besides, a breakwater structure was further introduced to enhance the stability of these two types of floaters. Detailed data on floater motions and mooring line forces were collected under monochromatic wave conditions. Extensive analysis was performed to evaluate the wave-mitigating performance of the breakwater, as well as the nonlinearity in the motion and force time histories. Overall, the work provides valuable experimental data and novel insights into the design of FPV floaters and breakwater protection, supporting long-term sustainability of FPV on the ocean.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113029"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generative heliostat field layout optimization and application based on an improved Harris Hawk Optimization algorithm 基于改进的 Harris Hawk 优化算法的生成式定日镜场布局优化与应用
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-10-31 DOI: 10.1016/j.solener.2024.113005
Xiang-Yu Yang, Bo Gao, Tao Huang, Kai Mao
{"title":"Generative heliostat field layout optimization and application based on an improved Harris Hawk Optimization algorithm","authors":"Xiang-Yu Yang,&nbsp;Bo Gao,&nbsp;Tao Huang,&nbsp;Kai Mao","doi":"10.1016/j.solener.2024.113005","DOIUrl":"10.1016/j.solener.2024.113005","url":null,"abstract":"<div><div>This study proposes a pattern-free layout method for continuous generation and optimization of heliostat positions based on optical efficiency. Using annual weighted cosine efficiency as the objective function, the initial layout is generated through a continuous search from the optimal point of the entire field. This is followed by a secondary optimization and selection of all heliostats based on annual weighted optical efficiency. Points with efficiency above the threshold are retained, while low-efficiency points are discarded and re-entered into the search optimization until all eligible heliostat positions are identified, ultimately resulting in a highly efficient heliostat field. The efficiency improvement from the generative pattern-free layout optimization is primarily attributed to the initial search using annual weighted cosine efficiency, which enhances the annual weighted cosine efficiency of the field, and the secondary screening optimization, which improves shading and blocking efficiency. Compared to the original PS10 heliostat field, the annual weighted efficiency increased by 1.77%. Finally, two clustering-based pattern-free layout methods are proposed. The total distance from all points within a K-means cluster to the reference center is 58,238.1974 m, a reduction of 71.18% compared to the untreated original heliostat field. The method based on the Gaussian Mixture Model reduces the distance to the reference center by 66.90%. Classification based on optical efficiency reflects the overall distribution structure of the heliostat field’s optical efficiency, reducing the layout difficulty of pattern-free heliostat fields and providing feasibility for transforming theoretical research into practical engineering applications.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113005"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution and optimization of solar radiation in a solar greenhouse under the influence of wall shading 墙体遮阳影响下日光温室的太阳辐射分布与优化
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-10-31 DOI: 10.1016/j.solener.2024.113034
Lianhua Deng, Angui Li, Jigang Che
{"title":"Distribution and optimization of solar radiation in a solar greenhouse under the influence of wall shading","authors":"Lianhua Deng,&nbsp;Angui Li,&nbsp;Jigang Che","doi":"10.1016/j.solener.2024.113034","DOIUrl":"10.1016/j.solener.2024.113034","url":null,"abstract":"<div><div>In this study, an indoor solar radiation calculation model was established to investigate the horizontal beam and diffuse radiation distributions in a solar greenhouse and their optimization under the influence of wall shading. According to the model calculation results, both the indoor horizontal beam and diffuse radiation were influenced by greenhouse wall shading. The closer the location was to the corner, the lower the received global solar radiation on a horizontal surface. From 08:00 to 16:00 in winter, the position of the solar energy maximum on the greenhouse ground surface gradually moved from southwest to southeast. Then, the concept of the solar radiation utilization efficiency was proposed to explain the indoor horizontal solar radiation distribution differences between the span and length directions. Finally, the horizontal solar radiation variation was studied via dimensionless analysis of greenhouse building parameters. A sloped soil surface was proposed to improve global solar radiation received by the soil surface. On the basis of the dimensionless analysis results, when the length-height ratio was less than 4, ranged from 4 to 10, or greater than 10, there was an obvious shade effect, a weak shade effect, or a negligible shade effect, respectively. At soil slopes of 2.5°, 5°, 7.5°, and 10°, the hourly mean value of the total solar radiation on the soil surface from 08:00 to 16:00 increased by 6 %, 11 %, 15 %, and 20 %, respectively, compared with the original value.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113034"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance optimization of pulsating heat pipe integrated compound parabolic solar collector using hybrid Red Fox optimizer based DNN (DNN-Rdfx) 使用基于 DNN(DNN-Rdfx)的红狐混合优化器优化脉动热管集成复合抛物面太阳能集热器的性能
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-10-30 DOI: 10.1016/j.solener.2024.113038
P. Vijayakumar , A. Gokul Karthik , R. Vijay , G. Kumaresan
{"title":"Performance optimization of pulsating heat pipe integrated compound parabolic solar collector using hybrid Red Fox optimizer based DNN (DNN-Rdfx)","authors":"P. Vijayakumar ,&nbsp;A. Gokul Karthik ,&nbsp;R. Vijay ,&nbsp;G. Kumaresan","doi":"10.1016/j.solener.2024.113038","DOIUrl":"10.1016/j.solener.2024.113038","url":null,"abstract":"<div><div>Non-renewable energy usage has gradually increased over the past few decades, polluting the atmosphere. In the investigation, increasing the thermal performance of pulsating heat pipe-integrated compound parabolic solar collectors using hybrid Red Fox optimizer-based DNN. The heat transfer fluid varies the filling ratio, and nanoparticles add to the concentration level. The working fluids are titanium dioxide (TiO<sub>2</sub>) and single-wall carbon nanotubes (SWCNT), and the base fluid is deionized water. The filling ratio varies between 40, 50, and 60 % in pulsating heat pipe (PHP) system validation. Thermal resistance, thermal efficiency, and temperature are the experimental validation criteria for evaluating thermal performance. The Nano fluid combination of DIW + 100 ppm SWCNT + 100 ppm TiO<sub>2</sub> significantly outperforms other working fluid combinations. Temperature and thermal efficiency increase by adding nanoparticles to the heat transfer fluid and reducing the thermal resistance. During experimentation with a 60 % filling ratio, the maximum respective temperature, thermal efficiency, and thermal resistivity of 68.167 °C, 58.7 %, and 0.627 °C/W are observed at around 01:00p.m. The predicted and optimized filling ratio from DNN-RdFx is also nearly 60 %. For this optimum filling ratio, the algorithm predicted optimum thermal resistance, thermal efficiency, and temperature are 0.588 °C/W, 62.48 %, and 69.35 °C, respectively, which is predicted to be achieved around 01.18p.m. The confirmatory test readings around this time period got closer to the optimum results with less than 4 % error. The test result indicates the nanoparticles are increasing the thermal performance of the PHP.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 113038"},"PeriodicalIF":6.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic model and compensation circuit for solar array characteristics 太阳能电池阵列特性的动态模型和补偿电路
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-10-30 DOI: 10.1016/j.solener.2024.113022
Kentaro Yokota, Hiroyuki Toyota, Shusaku Kanaya, Yu Miyazawa
{"title":"Dynamic model and compensation circuit for solar array characteristics","authors":"Kentaro Yokota,&nbsp;Hiroyuki Toyota,&nbsp;Shusaku Kanaya,&nbsp;Yu Miyazawa","doi":"10.1016/j.solener.2024.113022","DOIUrl":"10.1016/j.solener.2024.113022","url":null,"abstract":"<div><div>Voltage control in spacecraft power systems relies on switching converters to regulate solar panel power. Traditional power controller design neglects the dynamic characteristics of solar arrays, impacting robustness. Solar Array Simulators (SASs) mimic static characteristics but differ dynamically. This paper proposes an equivalent circuit to simulate dynamic characteristics, enhancing the design reliability of power control systems and a compensation circuit for SASs to improve verification accuracy. Test results comparing solar arrays and SAS frequency characteristics are presented, followed by the proposed circuit’s design and validation using experiments and simulations. Results confirm the effectiveness of the proposed approach in capturing dynamic characteristics, thereby enhancing the reliability of both power control system design and SAS verification.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 113022"},"PeriodicalIF":6.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信