Yihao Chi, Hong Xiao, Zhihai Zhang, Yang Wang, Zhongxia Qian, Weize Zhao
{"title":"Influence of wind-blown sand content on the mechanical quality state of ballast bed in sandy railways","authors":"Yihao Chi, Hong Xiao, Zhihai Zhang, Yang Wang, Zhongxia Qian, Weize Zhao","doi":"10.1007/s40534-024-00343-7","DOIUrl":"https://doi.org/10.1007/s40534-024-00343-7","url":null,"abstract":"<p>During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method (DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional (3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior (such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"17 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heng Zhang, Liang Ling, Sebastian Stichel, Wanming Zhai
{"title":"Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability","authors":"Heng Zhang, Liang Ling, Sebastian Stichel, Wanming Zhai","doi":"10.1007/s40534-024-00336-6","DOIUrl":"https://doi.org/10.1007/s40534-024-00336-6","url":null,"abstract":"<p>Hunting stability is an important performance criterion in railway vehicles. This study proposes an incorporation of a bio-inspired limb-like structure (LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains (HSTs). Initially, a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests. Subsequently, a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior. The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed. Then, the nonlinear damping of the bio-inspired LLS, which has a positive correlation with the relative displacement, can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system. Furthermore, a comprehensive numerical model of a high-speed train, considering all nonlinearities, is established to investigate the influence of different types of motor suspension. The simulation results are well consistent with the theoretical analysis. The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"30 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the feasibility of prestressed anchor cables as an alternative to temporary support in the excavation of super-large-span tunnel","authors":"Shunhua Zhou, Yuyin Jin, Zhiyao Tian, Chunhua Zou, Heming Zhao, Zengrun Miao","doi":"10.1007/s40534-024-00340-w","DOIUrl":"https://doi.org/10.1007/s40534-024-00340-w","url":null,"abstract":"<p>Excavating super-large-span tunnels in soft rock masses presents significant challenges. To ensure safety, the sequential excavation method is commonly adopted. It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages. However, these internal supports generally impose spatial constraints, limiting the use of large-scale excavation equipment and reducing construction efficiency. To address this constraint, this study adopts the “Shed-frame” principle to explore the feasibility of an innovative support system, which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions. To evaluate its effectiveness, a field case involving the excavation of a 24-m span tunnel in soft rock is presented, and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system. The results revealed that prestressed anchor cables integrated the initial support with the shed, creating an effective “shed-frame” system, which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds. Moreover, the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly. In summary, the proposed support system balances construction efficiency and safety. These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"90 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiliang Li, Yuqing Sun, Menghan Ouyang, Zhigang Yang
{"title":"Flow and sound fields of scaled high-speed trains with different coach numbers running in long tunnel","authors":"Qiliang Li, Yuqing Sun, Menghan Ouyang, Zhigang Yang","doi":"10.1007/s40534-024-00330-y","DOIUrl":"https://doi.org/10.1007/s40534-024-00330-y","url":null,"abstract":"<p>Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three, six and eight coaches in a long tunnel, and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model. Time-averaged drag coefficients of the head coach of three trains are similar, but at the tail coach of the multi-group trains it is much larger than that of the three-coach train. The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation (STD) of aerodynamic force coefficients: 0.0110 for drag coefficient (<i>C</i><sub>d</sub>), 0.0198 for lift coefficient (<i>C</i><sub>l</sub>) and 0.0371 for side coefficient (<i>C</i><sub>s</sub>). Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase, which is different from the three-coach train. Tunnel walls affect the acoustic distribution at the bottom, only after the coach number reaches a certain value, and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number. Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies, but increases the sound pressure level values at the tail bogie cavities. Furthermore, different from the turbulent pressure, the first two sound pressure proper orthogonal decomposition (POD) modes in the bogie cavities contain 90% of the total energy, and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"21 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yihao Chi, Hong Xiao, Yang Wang, Zhihai Zhang, Mahantesh M. Nadakatti
{"title":"Experimental study and numerical simulation of the impact of under-sleeper pads on the dynamic and static mechanical behavior of heavy-haul railway ballast track","authors":"Yihao Chi, Hong Xiao, Yang Wang, Zhihai Zhang, Mahantesh M. Nadakatti","doi":"10.1007/s40534-024-00337-5","DOIUrl":"https://doi.org/10.1007/s40534-024-00337-5","url":null,"abstract":"<p>Laying the under-sleeper pad (USP) is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload. To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system, numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method (DEM)—multi-flexible body dynamic (MFBD) coupling analysis method. The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models. The results show that using the USP results in a 43.01% reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers. It effectively reduces the load borne by the sleeper directly under the wheel load, with a 7.89% reduction in the pressure on the sleeper. Furthermore, the laying of the USP changes the lateral resistance sharing ratio of the ballast bed, significantly reducing the stress level of the ballast bed under train loads, with an average stress reduction of 42.19 kPa. It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50% to 70%, which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs. In summary, laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"73 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuchen Liu, Xiaoqin Lyu, Mingyuan Chang, Qiqi Yang
{"title":"Low-frequency oscillation of train–network system considering traction power supply mode","authors":"Yuchen Liu, Xiaoqin Lyu, Mingyuan Chang, Qiqi Yang","doi":"10.1007/s40534-023-00328-y","DOIUrl":"https://doi.org/10.1007/s40534-023-00328-y","url":null,"abstract":"<p>The low-frequency oscillation (LFO) has occurred in the train–network system due to the introduction of the power electronics of the trains. The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system, where the trains are supplied by two traction substations. In this work, based on the single-input and single-output impedance model of China CRH5 trains, the node admittance matrices of the train–network system both in unilateral and bilateral power supply modes are established, including three-phase power grid, traction transformers and traction network. Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems. Moreover, the influence of the equivalent inductance of the power grid, the length of the transmission line, and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system. Finally, the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"4 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139911161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saikat Dutta, Tim Harrison, Christopher Ward, Roger Dixon, Phil Winship
{"title":"A framework for dynamic modelling of railway track switches considering the switch blades, actuators and control systems","authors":"Saikat Dutta, Tim Harrison, Christopher Ward, Roger Dixon, Phil Winship","doi":"10.1007/s40534-023-00324-2","DOIUrl":"https://doi.org/10.1007/s40534-023-00324-2","url":null,"abstract":"<p>The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment. This is important because, globally, railway track switches are used to allow trains to change routes; they are a key part of all railway networks. However, because track switches are single points of failure and safety-critical, their inability to operate correctly can cause significant delays and concomitant costs. In order to better understand the dynamic behaviour of switches during operation, this paper has developed a full simulation twin of a complete track switch system. The approach fuses finite element for the rail bending and motion, with physics-based models of the electromechanical actuator system and the control system. Hence, it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built. This is useful for looking at the modification or monitoring of existing switches, and it becomes even more important when new switch concepts are being considered and evaluated. The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively. The paper describes the modelling approach, demonstrates the methodology by developing the system model for a novel “REPOINT” switch system, and evaluates the system level performance against the dynamic performance requirements for the switch. In the context of that case study, it is found that the proposed new actuation system as designed can meet (and exceed) the system performance requirements, and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"102 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139409921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Increasing realism in modelling energy losses in railway vehicles and their impact to energy-efficient train control","authors":"Michael Nold, Francesco Corman","doi":"10.1007/s40534-023-00322-4","DOIUrl":"https://doi.org/10.1007/s40534-023-00322-4","url":null,"abstract":"","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"65 1","pages":"1-29"},"PeriodicalIF":6.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taifeng Li, Kang Xie, Xiaobin Chen, Zhixing Deng, Qian Su
{"title":"Computer vision-aided DEM study on the compaction characteristics of graded subgrade filler considering realistic coarse particle shapes","authors":"Taifeng Li, Kang Xie, Xiaobin Chen, Zhixing Deng, Qian Su","doi":"10.1007/s40534-023-00325-1","DOIUrl":"https://doi.org/10.1007/s40534-023-00325-1","url":null,"abstract":"<p>The compaction quality of subgrade filler strongly affects subgrade settlement. The main objective of this research is to analyze the macro- and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles. First, an improved Viola–Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler. Shape indexes of 2D subgrade filler are then computed and statistically analyzed. Finally, numerical simulations are performed to quantitatively investigate the effects of the aspect ratio (AR) and interparticle friction coefficient (<i>μ</i>) on the macro- and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method (DEM). The results show that with the increasing AR, the coarse particles are narrower, leading to the increasing movement of fine particles during compaction, which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles. Moreover, the average displacement of particles is strongly influenced by the AR, indicating that their occlusion under power relies on particle shapes. The displacement and velocity of fine particles are much greater than those of the coarse particles, which shows that compaction is primarily a migration of fine particles. Under the cyclic load, the interparticle friction coefficient <i>μ</i> has little effect on the internal structure of the sample; under the quasi-static loads, however, the increase in <i>μ</i> will lead to a significant increase in the porosity of the sample. This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"164 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138553090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}