Yuchen Liu, Xiaoqin Lyu, Mingyuan Chang, Qiqi Yang
{"title":"考虑牵引供电模式的列车网络系统低频振荡","authors":"Yuchen Liu, Xiaoqin Lyu, Mingyuan Chang, Qiqi Yang","doi":"10.1007/s40534-023-00328-y","DOIUrl":null,"url":null,"abstract":"<p>The low-frequency oscillation (LFO) has occurred in the train–network system due to the introduction of the power electronics of the trains. The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system, where the trains are supplied by two traction substations. In this work, based on the single-input and single-output impedance model of China CRH5 trains, the node admittance matrices of the train–network system both in unilateral and bilateral power supply modes are established, including three-phase power grid, traction transformers and traction network. Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems. Moreover, the influence of the equivalent inductance of the power grid, the length of the transmission line, and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system. Finally, the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-frequency oscillation of train–network system considering traction power supply mode\",\"authors\":\"Yuchen Liu, Xiaoqin Lyu, Mingyuan Chang, Qiqi Yang\",\"doi\":\"10.1007/s40534-023-00328-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The low-frequency oscillation (LFO) has occurred in the train–network system due to the introduction of the power electronics of the trains. The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system, where the trains are supplied by two traction substations. In this work, based on the single-input and single-output impedance model of China CRH5 trains, the node admittance matrices of the train–network system both in unilateral and bilateral power supply modes are established, including three-phase power grid, traction transformers and traction network. Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems. Moreover, the influence of the equivalent inductance of the power grid, the length of the transmission line, and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system. Finally, the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.</p>\",\"PeriodicalId\":41270,\"journal\":{\"name\":\"Railway Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Railway Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40534-023-00328-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-023-00328-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Low-frequency oscillation of train–network system considering traction power supply mode
The low-frequency oscillation (LFO) has occurred in the train–network system due to the introduction of the power electronics of the trains. The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system, where the trains are supplied by two traction substations. In this work, based on the single-input and single-output impedance model of China CRH5 trains, the node admittance matrices of the train–network system both in unilateral and bilateral power supply modes are established, including three-phase power grid, traction transformers and traction network. Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems. Moreover, the influence of the equivalent inductance of the power grid, the length of the transmission line, and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system. Finally, the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
期刊介绍:
Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.