{"title":"Analysis of mesoscopic mechanical dynamic characteristics of ballast bed with under sleeper pads","authors":"Xiong Yang, Liuyang Yu, Xuejun Wang, Zhigang Xu, Yu Deng, Houxu Li","doi":"10.1007/s40534-023-00319-z","DOIUrl":"https://doi.org/10.1007/s40534-023-00319-z","url":null,"abstract":"Abstract The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads (USPs) was studied. The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques, and the 3D dynamic model of the rail–sleeper–ballast bed was constructed using the coupled discrete element method–multi-flexible-body dynamics (DEM–MFBD) approach. We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests. It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles, and subsequently the number of contacts between them. As the depth of the granular ballast bed increases, the contact area becomes larger, and the contact force between the ballast particles gradually decreases. Under the action of the elastic USPs, the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced. The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom, and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"75 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134974251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. F. Jackson, R. Mishra, J. M. Rebelo, J. Santos, P. Antunes, J. Pombo, H. Magalhães, L. Wills, M. Askill
{"title":"Modelling dynamic pantograph loads with combined numerical analysis","authors":"F. F. Jackson, R. Mishra, J. M. Rebelo, J. Santos, P. Antunes, J. Pombo, H. Magalhães, L. Wills, M. Askill","doi":"10.1007/s40534-023-00318-0","DOIUrl":"https://doi.org/10.1007/s40534-023-00318-0","url":null,"abstract":"Abstract Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains. Changing heights of overhead lines to accommodate level crossings, overbridges, and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile, and thus aerodynamic load changes significantly with operational height. This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations, such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces. Specifically, computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting, such as that of the recessed cavity on a Class 800 train. From an aerodynamic perspective, this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing, although the difference between the two is found to reduce with increasing pantograph extension. Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour. The results obtained show how considering aerodynamic forces enhance the realism of the models, leading to behaviour of the pantograph–catenary contact forces closely matching that seen in experimental tests.","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135855530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Wang, Qian Su, Zongyu Zhang, Feihu Huang, Chenfang He
{"title":"Stability analysis of loose accumulation slopes under rainfall: case study of a high-speed railway in Southwest China","authors":"Xin Wang, Qian Su, Zongyu Zhang, Feihu Huang, Chenfang He","doi":"10.1007/s40534-023-00317-1","DOIUrl":"https://doi.org/10.1007/s40534-023-00317-1","url":null,"abstract":"Abstract The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability, which can easily induce adverse geological disasters under rainfall conditions. To ensure the smooth construction of the high-speed railway and the subsequent safe operation, it is necessary to master the stability evolution process of the loose accumulation slope under rainfall. This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module. The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method. To validate the simulation results, a field monitoring system is established to study the deformation characteristics of the slope under rainfall. The results show that rainfall duration is the key factor affecting slope stability. Given a constant amount of rainfall, the stability of the slope decreases with increasing duration of rainfall. Moreover, when the amount and duration of rainfall are constant, continuous rainfall has a greater impact on slope stability than intermittent rainfall. The setting of the field retaining structures has a significant role in improving slope stability. The field monitoring data show that the slope is in the initial deformation stage and has good stability, which verifies the rationality of the numerical simulation method. The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system.","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135826190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Maglio, T. Vernersson, J. Nielsen, A. Ekberg, E. Kabo
{"title":"Influence of railway wheel tread damage on wheel–rail impact loads and the durability of wheelsets","authors":"Michele Maglio, T. Vernersson, J. Nielsen, A. Ekberg, E. Kabo","doi":"10.1007/s40534-023-00316-2","DOIUrl":"https://doi.org/10.1007/s40534-023-00316-2","url":null,"abstract":"","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46996025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Esen, O. Laghrouche, P. Woodward, D. Medina-Pineda, Q. Corbisez, J. Shih, D. Connolly
{"title":"Numerical analysis of high-speed railway slab tracks using calibrated and validated 3D time-domain modelling","authors":"A. Esen, O. Laghrouche, P. Woodward, D. Medina-Pineda, Q. Corbisez, J. Shih, D. Connolly","doi":"10.1007/s40534-023-00315-3","DOIUrl":"https://doi.org/10.1007/s40534-023-00315-3","url":null,"abstract":"","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45233559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of train speed and its mitigation measures in the short- and long-term performance of a ballastless transition zone","authors":"A. Ramos, R. Calçada, A. Correia","doi":"10.1007/s40534-023-00314-4","DOIUrl":"https://doi.org/10.1007/s40534-023-00314-4","url":null,"abstract":"","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46515053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A strategy for lightweight designing of a railway vehicle car body including composite material and dynamic structural optimization","authors":"A. Cascino, E. Meli, A. Rindi","doi":"10.1007/s40534-023-00312-6","DOIUrl":"https://doi.org/10.1007/s40534-023-00312-6","url":null,"abstract":"","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"1 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42983193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Liu, Chengguang Su, Rong-shan Yang, J. Ren, Xue-yi Liu
{"title":"Temperature field test and prediction using a GA-BP neural network for CRTS II slab tracks","authors":"Dan Liu, Chengguang Su, Rong-shan Yang, J. Ren, Xue-yi Liu","doi":"10.1007/s40534-023-00309-1","DOIUrl":"https://doi.org/10.1007/s40534-023-00309-1","url":null,"abstract":"","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46371554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zishuai Pang, Liwen Wang, Shengjie Wang, Li Li, Q. Peng
{"title":"Dynamic train dwell time forecasting: a hybrid approach to address the influence of passenger flow fluctuations","authors":"Zishuai Pang, Liwen Wang, Shengjie Wang, Li Li, Q. Peng","doi":"10.1007/s40534-023-00311-7","DOIUrl":"https://doi.org/10.1007/s40534-023-00311-7","url":null,"abstract":"","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46169168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}