{"title":"电气化铁路的牵引动力系统:发展、现状和未来趋势","authors":"Haitao Hu, Yunjiang Liu, Yong Li, Zhengyou He, Shibin Gao, Xiaojuan Zhu, Haidong Tao","doi":"10.1007/s40534-023-00320-6","DOIUrl":null,"url":null,"abstract":"Abstract Traction power systems (TPSs) play a vital role in the operation of electrified railways. The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target. On the basis of sorting out the power supply structures of conventional AC and DC modes, this paper first reviews the characteristics of the existing TPSs, such as weak power supply flexibility and low-energy efficiency. Furthermore, the power supply structures of various TPSs for future electrified railways are described in detail, which satisfy longer distance, low-carbon, high-efficiency, high-reliability and high-quality power supply requirements. Meanwhile, the application prospects of different traction modes are discussed from both technical and economic aspects. Eventually, this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system, speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode, employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traction power systems for electrified railways: evolution, state of the art, and future trends\",\"authors\":\"Haitao Hu, Yunjiang Liu, Yong Li, Zhengyou He, Shibin Gao, Xiaojuan Zhu, Haidong Tao\",\"doi\":\"10.1007/s40534-023-00320-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Traction power systems (TPSs) play a vital role in the operation of electrified railways. The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target. On the basis of sorting out the power supply structures of conventional AC and DC modes, this paper first reviews the characteristics of the existing TPSs, such as weak power supply flexibility and low-energy efficiency. Furthermore, the power supply structures of various TPSs for future electrified railways are described in detail, which satisfy longer distance, low-carbon, high-efficiency, high-reliability and high-quality power supply requirements. Meanwhile, the application prospects of different traction modes are discussed from both technical and economic aspects. Eventually, this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system, speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode, employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.\",\"PeriodicalId\":41270,\"journal\":{\"name\":\"Railway Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Railway Engineering Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40534-023-00320-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40534-023-00320-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Traction power systems for electrified railways: evolution, state of the art, and future trends
Abstract Traction power systems (TPSs) play a vital role in the operation of electrified railways. The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target. On the basis of sorting out the power supply structures of conventional AC and DC modes, this paper first reviews the characteristics of the existing TPSs, such as weak power supply flexibility and low-energy efficiency. Furthermore, the power supply structures of various TPSs for future electrified railways are described in detail, which satisfy longer distance, low-carbon, high-efficiency, high-reliability and high-quality power supply requirements. Meanwhile, the application prospects of different traction modes are discussed from both technical and economic aspects. Eventually, this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system, speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode, employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
期刊介绍:
Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.