Heng Zhang, Liang Ling, Sebastian Stichel, Wanming Zhai
{"title":"Integration of bio-inspired limb-like structure damping into motor suspension of high-speed trains to enhance bogie hunting stability","authors":"Heng Zhang, Liang Ling, Sebastian Stichel, Wanming Zhai","doi":"10.1007/s40534-024-00336-6","DOIUrl":null,"url":null,"abstract":"<p>Hunting stability is an important performance criterion in railway vehicles. This study proposes an incorporation of a bio-inspired limb-like structure (LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains (HSTs). Initially, a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests. Subsequently, a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior. The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed. Then, the nonlinear damping of the bio-inspired LLS, which has a positive correlation with the relative displacement, can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system. Furthermore, a comprehensive numerical model of a high-speed train, considering all nonlinearities, is established to investigate the influence of different types of motor suspension. The simulation results are well consistent with the theoretical analysis. The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"30 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-024-00336-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hunting stability is an important performance criterion in railway vehicles. This study proposes an incorporation of a bio-inspired limb-like structure (LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains (HSTs). Initially, a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests. Subsequently, a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior. The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed. Then, the nonlinear damping of the bio-inspired LLS, which has a positive correlation with the relative displacement, can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system. Furthermore, a comprehensive numerical model of a high-speed train, considering all nonlinearities, is established to investigate the influence of different types of motor suspension. The simulation results are well consistent with the theoretical analysis. The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
期刊介绍:
Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.