考虑道岔叶片、执行器和控制系统的铁路道岔动态建模框架

IF 4.4 1区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY
Saikat Dutta, Tim Harrison, Christopher Ward, Roger Dixon, Phil Winship
{"title":"考虑道岔叶片、执行器和控制系统的铁路道岔动态建模框架","authors":"Saikat Dutta, Tim Harrison, Christopher Ward, Roger Dixon, Phil Winship","doi":"10.1007/s40534-023-00324-2","DOIUrl":null,"url":null,"abstract":"<p>The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment. This is important because, globally, railway track switches are used to allow trains to change routes; they are a key part of all railway networks. However, because track switches are single points of failure and safety-critical, their inability to operate correctly can cause significant delays and concomitant costs. In order to better understand the dynamic behaviour of switches during operation, this paper has developed a full simulation twin of a complete track switch system. The approach fuses finite element for the rail bending and motion, with physics-based models of the electromechanical actuator system and the control system. Hence, it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built. This is useful for looking at the modification or monitoring of existing switches, and it becomes even more important when new switch concepts are being considered and evaluated. The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively. The paper describes the modelling approach, demonstrates the methodology by developing the system model for a novel “REPOINT” switch system, and evaluates the system level performance against the dynamic performance requirements for the switch. In the context of that case study, it is found that the proposed new actuation system as designed can meet (and exceed) the system performance requirements, and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"102 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for dynamic modelling of railway track switches considering the switch blades, actuators and control systems\",\"authors\":\"Saikat Dutta, Tim Harrison, Christopher Ward, Roger Dixon, Phil Winship\",\"doi\":\"10.1007/s40534-023-00324-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment. This is important because, globally, railway track switches are used to allow trains to change routes; they are a key part of all railway networks. However, because track switches are single points of failure and safety-critical, their inability to operate correctly can cause significant delays and concomitant costs. In order to better understand the dynamic behaviour of switches during operation, this paper has developed a full simulation twin of a complete track switch system. The approach fuses finite element for the rail bending and motion, with physics-based models of the electromechanical actuator system and the control system. Hence, it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built. This is useful for looking at the modification or monitoring of existing switches, and it becomes even more important when new switch concepts are being considered and evaluated. The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively. The paper describes the modelling approach, demonstrates the methodology by developing the system model for a novel “REPOINT” switch system, and evaluates the system level performance against the dynamic performance requirements for the switch. In the context of that case study, it is found that the proposed new actuation system as designed can meet (and exceed) the system performance requirements, and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.</p>\",\"PeriodicalId\":41270,\"journal\":{\"name\":\"Railway Engineering Science\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Railway Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40534-023-00324-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-023-00324-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要贡献在于开发和演示了一种新方法,可用于开发铁路轨道开关系统的模拟孪生系统,以测试数字环境中的功能。这一点非常重要,因为在全球范围内,铁路轨道开关用于让列车改变路线;它们是所有铁路网络的关键部分。然而,由于轨道开关是单点故障且对安全至关重要,因此如果它们无法正常运行,就会导致严重的延误和随之而来的成本。为了更好地了解道岔在运行过程中的动态行为,本文开发了一个完整的轨道道岔系统的全仿真双胞胎。该方法融合了轨道弯曲和运动的有限元模型,以及机电执行器系统和控制系统的物理模型。因此,它为研究人员和工程师提供了一个机会,在新型道岔和道岔机械建成之前,探索和了解其动态运行的设计空间。这对于研究现有开关的改造或监控非常有用,而在考虑和评估新开关概念时,这一点就变得更加重要。模拟能够实时或更快地运行,这意味着可以交互式地反复检查设计。本文介绍了建模方法,通过为新型 "REPOINT "交换机系统开发系统模型来演示该方法,并根据交换机的动态性能要求对系统级性能进行评估。在该案例研究中,我们发现所设计的新传动系统能够满足(甚至超过)系统性能要求,而且传动系统内置的容错功能可确保在单个传动装置发生故障后继续运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A framework for dynamic modelling of railway track switches considering the switch blades, actuators and control systems

A framework for dynamic modelling of railway track switches considering the switch blades, actuators and control systems

The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment. This is important because, globally, railway track switches are used to allow trains to change routes; they are a key part of all railway networks. However, because track switches are single points of failure and safety-critical, their inability to operate correctly can cause significant delays and concomitant costs. In order to better understand the dynamic behaviour of switches during operation, this paper has developed a full simulation twin of a complete track switch system. The approach fuses finite element for the rail bending and motion, with physics-based models of the electromechanical actuator system and the control system. Hence, it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built. This is useful for looking at the modification or monitoring of existing switches, and it becomes even more important when new switch concepts are being considered and evaluated. The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively. The paper describes the modelling approach, demonstrates the methodology by developing the system model for a novel “REPOINT” switch system, and evaluates the system level performance against the dynamic performance requirements for the switch. In the context of that case study, it is found that the proposed new actuation system as designed can meet (and exceed) the system performance requirements, and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Railway Engineering Science
Railway Engineering Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
10.80
自引率
7.90%
发文量
1061
审稿时长
15 weeks
期刊介绍: Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信