Progress in Energy and Combustion Science最新文献

筛选
英文 中文
Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science 用于能源和可持续化工生产的单原子催化剂的阐明:合成、表征和前沿科学
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-05-01 DOI: 10.1016/j.pecs.2023.101074
Adrian Chun Minh Loy , Sin Yong Teng , Bing Shen How , Xixia Zhang , Kin Wai Cheah , Valeria Butera , Wei Dong Leong , Bridgid Lai Fui Chin , Chung Loong Yiin , Martin J. Taylor , Georgios Kyriakou
{"title":"Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science","authors":"Adrian Chun Minh Loy ,&nbsp;Sin Yong Teng ,&nbsp;Bing Shen How ,&nbsp;Xixia Zhang ,&nbsp;Kin Wai Cheah ,&nbsp;Valeria Butera ,&nbsp;Wei Dong Leong ,&nbsp;Bridgid Lai Fui Chin ,&nbsp;Chung Loong Yiin ,&nbsp;Martin J. Taylor ,&nbsp;Georgios Kyriakou","doi":"10.1016/j.pecs.2023.101074","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101074","url":null,"abstract":"<div><p>The emergence of single atom sites as a frontier research area in catalysis has sparked extensive academic and industrial interest, especially for energy, environmental and chemicals production processes. Single atom catalysts (SACs) have shown remarkable performance in a variety of catalytic reactions, demonstrating high selectivity to the products of interest, long lifespan, high stability and more importantly high atomic metal utilization efficiency. In this review, we unveil in depth insights on development and achievements of SACs, including (a) Chronological progress on SACs development, (b) Recent advances in SACs synthesis, (c) Spatial and temporal SACs characterization techniques, (d) Application of SACs in different energy and chemical production, (e) Environmental and economic aspects of SACs, and (f) Current challenges, promising ideas and future prospects for SACs. On a whole, this review serves to enlighten scientists and engineers in developing fundamental catalytic understanding that can be applied into the future, both for academia or valorizing chemical processes.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"96 ","pages":"Article 101074"},"PeriodicalIF":29.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3137473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation 基于化学环的晶格氧调制选择性氧化的能量转换
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-05-01 DOI: 10.1016/j.pecs.2022.101045
Zhao Sun , Christopher K. Russell , Kevin J. Whitty , Eric G. Eddings , Jinze Dai , Yulong Zhang , Maohong Fan , Zhiqiang Sun
{"title":"Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation","authors":"Zhao Sun ,&nbsp;Christopher K. Russell ,&nbsp;Kevin J. Whitty ,&nbsp;Eric G. Eddings ,&nbsp;Jinze Dai ,&nbsp;Yulong Zhang ,&nbsp;Maohong Fan ,&nbsp;Zhiqiang Sun","doi":"10.1016/j.pecs.2022.101045","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101045","url":null,"abstract":"<div><p><span><span>Modulating anionic oxygen in metal oxides<span> offers exceptional opportunities for energy material synthesis via redox looping; however, several challenges such as overoxidation and catalyst deactivation need to be solved. This paper provides an overview of the state-of-the-art schemes for the selective synthesis of valuable chemicals via lattice oxygen-induced redox looping. Compared with </span></span>previously published works<span><span>, this review focuses on lattice oxygen modulated energy transformation technologies via chemical looping. This review discusses the chemical looping-based selective oxidation<span> of methane to syngas/methanol, the oxidative coupling of methane, oxidative </span></span>steam reforming<span> of alcohols, and the oxidative dehydrogenation of hydrocarbons in the lattice oxygen-induced selective oxidation section. Additionally, moderate- and low-temperature </span></span></span>Ellingham diagrams<span><span> are extended to deduce the reactivity of the lattice oxygen based on thermodynamic calculation, which helps for oxygen carrier selection and product modulation. Moreover, less-researched but potential approaches to produce value-added energy materials by lattice oxygen are proposed in the perspective section, including selective oxidation of glycerol to glyceric acid, selective oxidation of methanol to acetic acid, and oxidative methane aromatization. Finally, implications for advanced </span>oxygen carrier material design, preparation, and characterization are also overviewed. This study expands the scope of the lattice oxygen regulated energy conversion, which seeks to benefit both fundamental research and industrial applications of value-added energy material generation via lattice oxygen modulated energy transformation.</span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"96 ","pages":"Article 101045"},"PeriodicalIF":29.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2622299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Combustion chemistry of aromatic hydrocarbons 芳烃的燃烧化学
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-05-01 DOI: 10.1016/j.pecs.2023.101076
Hanfeng Jin , Wenhao Yuan , Wei Li , Jiuzhong Yang , Zhongyue Zhou , Long Zhao , Yuyang Li , Fei Qi
{"title":"Combustion chemistry of aromatic hydrocarbons","authors":"Hanfeng Jin ,&nbsp;Wenhao Yuan ,&nbsp;Wei Li ,&nbsp;Jiuzhong Yang ,&nbsp;Zhongyue Zhou ,&nbsp;Long Zhao ,&nbsp;Yuyang Li ,&nbsp;Fei Qi","doi":"10.1016/j.pecs.2023.101076","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101076","url":null,"abstract":"<div><p><span><span><span>Aromatic hydrocarbons are important components of petroleum-based transportation fuels, biomass, coal, and solid waste, etc. The reaction kinetics of aromatic hydrocarbons largely determine the combustion characteristics and pollutant emission of vehicle/jet engines, power plants, and industrial reactors. While a few reviews have recently focused on aromatic hydrocarbons in gasoline surrogate fuels, </span>thermochemical conversion of biomass/coal/solid waste, and combustion soot formation, a dedicated overview of research on the combustion chemistry of aromatic hydrocarbons is still lacking. In the last decades, valuable investigations addressing the reaction kinetics were reported based on the measurements from </span>pyrolysis<span><span>, oxidation<span>, flames, shock tubes, and rapid compression machines, complemented by quantum chemistry and detailed kinetic modeling. Significant advances have allowed a better understanding of such physicochemical reacting system, from aromatic decomposition, oxidation, to pollutants formation. In the present review, aromatic hydrocarbons are systematically categorized to five common classes: basic, mono-substituted, multi-substituted, hydrogenated, and polycyclic aromatics. Fundamental aromatic combustion chemistry consists of the reactions of basic aromatic molecular structures. Then the aryl group strongly influences the reaction kinetics of aromatic derivates, which leads to very different combustion performance from those ordinary paraffins, </span></span>olefins, and </span></span>naphthenes. This paper seeks to provide an introduction to the knowledge gathered in the recent research, highlight pertinent aspects of this rapidly enriching information, and outlook the challenges towards fundamentally comprehensive aromatic combustion chemistry and practically efficient aromatic combustion model.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"96 ","pages":"Article 101076"},"PeriodicalIF":29.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems 生物燃料、电燃料、电燃料还是氢燃料?当前和新兴的可持续航空系统的回顾
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-05-01 DOI: 10.1016/j.pecs.2023.101073
Pimchanok Su-ungkavatin, Ligia Tiruta-Barna, Lorie Hamelin
{"title":"Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems","authors":"Pimchanok Su-ungkavatin,&nbsp;Ligia Tiruta-Barna,&nbsp;Lorie Hamelin","doi":"10.1016/j.pecs.2023.101073","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101073","url":null,"abstract":"<div><p><span>Climate neutrality is becoming a core long-term competitiveness asset within the aviation industry, as demonstrated by the several innovations and targets set within that sector, prior to and especially after the COVID-19 crisis. Ambitious timelines are set, involving important investment decisions to be taken in a 5-years horizon time. Here, we provide an in-depth review of alternative technologies for sustainable aviation revealed to date, which we classified into four main categories, namely i) biofuels, ii) electrofuels<span>, iii) electric (battery-based), and iv) hydrogen aviation. Nine biofuel and nine electrofuel pathways were reviewed, for which we supply the detailed process flow picturing all input, output, and co-products generated. The market uptake and use of these co-products was also investigated, along with the overall international regulations and targets for future aviation. As most of the inventoried pathways require hydrogen, we further reviewed six existing and emerging carbon-free hydrogen production technologies. Our review also details the five key battery technologies available (lithium-ion, advanced lithium-ion, solid-state battery, lithium-sulfur, lithium-air) for aviation. A semi-quantitative ranking covering environmental-, economic-, and technological performance indicators has been established to guide the selection of promising routes. The possible configuration schemes for electric </span></span>propulsion systems<span><span> are documented and classified as: i) battery-based, ii) fuel cell-based and iii) turboelectric configurations. Our review studied these four categories of sustainable aviation systems as modular technologies, yet these still have to be used in a hybridized fashion with conventional fossil-based kerosene. This is among others due to an aromatics content below the standardized requirements for biofuels and electrofuels, to a too low energy storage capacity in the case of batteries, or a sub-optimal </span>gas turbine engine<span> in the case of cryogenic hydrogen. Yet, we found that the latter was the only available option, based on the current and emerging technologies reviewed, for long-range aviation completely decoupled of fossil-based hydrocarbon fuels. The various challenges and opportunities associated with all these technologies are summarized in this study.</span></span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"96 ","pages":"Article 101073"},"PeriodicalIF":29.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2622300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Modelling treatment of deposits in particulate filters for internal combustion emissions 模拟处理沉积物微粒过滤器的内燃排放
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-05-01 DOI: 10.1016/j.pecs.2022.101043
Chung Ting Lao , Jethro Akroyd , Markus Kraft
{"title":"Modelling treatment of deposits in particulate filters for internal combustion emissions","authors":"Chung Ting Lao ,&nbsp;Jethro Akroyd ,&nbsp;Markus Kraft","doi":"10.1016/j.pecs.2022.101043","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101043","url":null,"abstract":"<div><p>Internal combustion in transport vehicles is still one of the biggest contributors to ultrafine particle emissions which have been proven to have many adverse effects on human health and the environment in general. To mitigate this problem a variety of particle filters have been developed and along with these filters a whole range of models aiming to optimise filter performance. This paper reviews a wide variety of particulate filter models for vehicular emission control and presents the volume of work in a unified and consistent notation. Particle filtration models are examined with respect to their filtration efficiency, the way they handle particle deposits within the filter wall, the formation of filter cake and the role of catalytic conversion and the effect of gaseous emission. Further, the impact of the chemical and physical properties of particulate deposits on the filter regeneration process is analysed and reaction pathways and rates are presented. In addition the accumulation of ash deposits and its impact on the filter behaviour is critically reviewed. Finally, various measures are identified that can potentially improve the current particle filter models.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"96 ","pages":"Article 101043"},"PeriodicalIF":29.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3446870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review 利用微藻基因改造等不同策略提高生物燃料微藻脂质产量综述
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-05-01 DOI: 10.1016/j.pecs.2023.101071
Kuan Shiong Khoo , Imran Ahmad , Kit Wayne Chew , Koji Iwamoto , Amit Bhatnagar , Pau Loke Show
{"title":"Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review","authors":"Kuan Shiong Khoo ,&nbsp;Imran Ahmad ,&nbsp;Kit Wayne Chew ,&nbsp;Koji Iwamoto ,&nbsp;Amit Bhatnagar ,&nbsp;Pau Loke Show","doi":"10.1016/j.pecs.2023.101071","DOIUrl":"https://doi.org/10.1016/j.pecs.2023.101071","url":null,"abstract":"<div><p>Microalgae have gained considerable attention as an alternative feedstock for the biofuel production, particularly in combination with genetic modification strategies that target enhanced lipid productivity. To tackle climate change issues, phasing out the usage of fossil fuels is seen as a priority, where the utilization of biofuel from microalgae serves as a potential sustainable energy source for various applications. These photosynthetic microalgae utilize solar energy and carbon dioxide to produce energy-rich compounds (i.e., starch and lipids), that can be further converted into biofuels of different types. Among different types of biofuels, biodiesel from the transesterification of triacylglycerols stands out as the most sustainable replacement of transportation fuel over fossil-based petroleum diesel. However, hurdles such as limited productivity, overall production cost and challenges in upscaling the algal technology leaves a huge gap on the road to commercialized microalgae-based biofuel. This review article first presents a comprehensive overview of imperative knowledge regarding microalgae in terms of algal classification, factors affecting the growth of microalgae during cultivation and different steps in upstream processing. This review also discusses recent advances in downstream processing of microalgal biorefinery. Additionally, this review paper focuses on deliberating various recent strategies of genetic modifications and their feasibility for enhanced lipid productivity in microalgae. Finally, the current challenges and future perspectives of microalgae-based biofuels are highlighted in this review discussing several aspects, including sustainability of microalgae-based biofuel production, current status of algae-based industry, risks and legislation considerations of genetic modification of microalgae.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"96 ","pages":"Article 101071"},"PeriodicalIF":29.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Lithium aluminum alloy anodes in Li-ion rechargeable batteries: past developments, recent progress, and future prospects 锂离子可充电电池用锂铝合金阳极:过去的发展、最新进展及未来展望
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-04-27 DOI: 10.1088/2516-1083/acd101
Tianye Zheng, S. Boles
{"title":"Lithium aluminum alloy anodes in Li-ion rechargeable batteries: past developments, recent progress, and future prospects","authors":"Tianye Zheng, S. Boles","doi":"10.1088/2516-1083/acd101","DOIUrl":"https://doi.org/10.1088/2516-1083/acd101","url":null,"abstract":"Aluminum (Al) metal has long been known to function as an anode in lithium-ion batteries (LIBs) owing to its high capacity, low potential, and effective suppression of dendrite growth. However, seemingly intrinsic degradation during cycling has made it less attractive throughout the years compared to graphitic carbon, silicon-blends, and more recently lithium metal itself. Nevertheless, with the recent unprecedented growth of the LIB industry, this review aims to revisit Al as an anode material, particularly in light of important advancements in understanding the electrochemical Li-Al system, as well as the growth of activity in solid-state batteries where cell designs may conveniently mitigate problems found in traditional liquid cells. Furthermore, this review culminates by highlighting several non-trivial points including: (1) prelithiatied Al anodes, with β-LiAl serving as an intercalation host, can be effectively immortal, depending on formation and cycling conditions; (2) the common knowledge of Al having a capacity of 993 mAh g−1 is inaccurate and attributed to kinetic limitations, thus silicon and lithium should not stand alone as the only ‘high-capacity’ candidates in the roadmap for future lithium-ion cells; (3) replacement of Cu current collectors with Al-based foil anodes may simplify LIB manufacturing and has important safety implications due to the galvanic stability of Al at high potentials vs. Li/Li+. Irrespective of the type of Li-ion device of interest, this review may be useful for those in the broader community to enhance their understanding of general alloy anode behavior, as the methodologies reported here can be extended to non-Al anodes and consequently, even to Na-ion and K-ion devices.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"29 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81603487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Policy supports for the deployment of solar fuels: islands as test-beds for a rapid green transition 对太阳能燃料部署的政策支持:岛屿作为快速绿色转型的试验台
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-04-20 DOI: 10.1088/2516-1083/accef8
Pau Farràs, Júlia T M Machado, B. Flynn, Joshua Williamson
{"title":"Policy supports for the deployment of solar fuels: islands as test-beds for a rapid green transition","authors":"Pau Farràs, Júlia T M Machado, B. Flynn, Joshua Williamson","doi":"10.1088/2516-1083/accef8","DOIUrl":"https://doi.org/10.1088/2516-1083/accef8","url":null,"abstract":"Coastal areas, particularly islands, are especially vulnerable to climate change due to their geographic and climate conditions. Reaching decarbonisation targets is a long process, which will require radical changes and ‘out of the box’ thinking. In this context, islands have become laboratories for the green transition by providing spaces for exploring possibilities and alternatives. Here we explore how hydrogen (H2) energy technologies can be a critical ally for island production of renewable electricity in part by providing a storage solution. However, given the abundance of sunlight on many islands, we also note the huge potential for a more profound engagement between renewables and hydrogen technologies via the co-generation of ‘green hydrogen’ using solar fuels technology. Solar hydrogen is a clean energy carrier produced by the direct or indirect use of solar irradiation for water-splitting processes such as photovoltaic systems coupled with electrolysers and photoelectrochemical cells. While this technology is fast emerging, we question to what extent sufficient policy support exists for such initiatives and how they could be scaled up. We report on a case study of a pilot H2 plant in the Canary Islands, and we offer recommendations on early-stage policy implications for hydrogen and other solar fuels in an island setting. The paper draws on the literature on islands as policy laboratories and the multi-level perspective on energy transitions. We argue that particular attention needs to be given to discrete issues such as research and planning, and better synchronising between emerging local technology niches, the various regulatory regimes for energy, together with global trends.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"28 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90648878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodes with metal-based electrocatalysts for redox flow batteries in a wide pH range 具有金属基电催化剂的电极,适用于大pH范围内的氧化还原液流电池
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-04-18 DOI: 10.1088/2516-1083/acce1b
Yingjia Huang, Liangyu Li, Lihui Xiong, Jinchao Cao, Fangfang Zhong, Xiaoqi Wang, Mei Ding, Chuankun Jia
{"title":"Electrodes with metal-based electrocatalysts for redox flow batteries in a wide pH range","authors":"Yingjia Huang, Liangyu Li, Lihui Xiong, Jinchao Cao, Fangfang Zhong, Xiaoqi Wang, Mei Ding, Chuankun Jia","doi":"10.1088/2516-1083/acce1b","DOIUrl":"https://doi.org/10.1088/2516-1083/acce1b","url":null,"abstract":"Redox flow batteries (RFBs) with decoupling energy and power, high safety, long durability and easy scalability have been considered as giant promising candidates for large-scale energy storage systems. As a key component of RFBs, the electrodes provide active sites for the conversion between electrical and chemical energies. Thus, the electrochemical properties of both the positive and negative electrodes are significantly important to the performance of batteries, especially the energy efficiency and the power. Therefore, improving the electrochemical performance of electrodes by effective modifications is essential for the advancements of RFBs. With high conductivity, high activity and stability, metal-based electrocatalysts have been widely used to modify and increase the electrochemical activities of electrodes in RFBs. This review summarizes and discusses the applications of metal-based electrocatalysts modified carbon-based electrodes of RFBs in a wide pH range (the acidic, alkaline and neutral electrolytes), including the characterizations of physicochemical and electrochemical properties of electrodes, the cell performance, the merits, and limitations.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"43 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88606752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pool fire dynamics: Principles, models and recent advances 池火动力学:原理、模型和最新进展
IF 29.5 1区 工程技术
Progress in Energy and Combustion Science Pub Date : 2023-03-01 DOI: 10.1016/j.pecs.2022.101070
Yuhang Chen , Jun Fang , Xiaolei Zhang , Yanli Miao , Yujie Lin , Ran Tu , Longhua Hu
{"title":"Pool fire dynamics: Principles, models and recent advances","authors":"Yuhang Chen ,&nbsp;Jun Fang ,&nbsp;Xiaolei Zhang ,&nbsp;Yanli Miao ,&nbsp;Yujie Lin ,&nbsp;Ran Tu ,&nbsp;Longhua Hu","doi":"10.1016/j.pecs.2022.101070","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101070","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Pool fire is generally described as a diffusion combustion process&lt;span&gt; that occurs above a horizontal fuel surface (composed of gaseous or volatile condensed fuel) with low (∼zero) initial momentum. Fundamentally, this type of diffusion combustion can be represented by basic forms ranging from a small laminar candle flame, to a turbulent medium-scale sofa fire, and up a storage tank fire, or even a massive forest fire. Pool fire research thus not only has fundamental scientific significance for the study of classical diffusion combustion, but also plays an important role in practical fire safety engineering. Therefore, pool fire is recognized as one of the canonical configurations in both the combustion and fire science communities. Pool fire research involves a rich, multilateral, and bidirectional coupling of fluid mechanics with scalar transport, combustion, and heat transfer. Because of the unabated large-scale disasters that can occur and the numerous and complex 'unknowns' involved in pool fires, several new questions have been raised with accompanying solutions and old questions have been revisited, particularly in recent decades. Significant developments have occurred from a variety of different perspectives in terms of pool fire dynamics, and thus the scientific progress made must be summarized in a systematic manner. This paper provides a comprehensive review of the basic fundamentals of pool fires, including the scale effect, the wind effect, pressure and gravity effects, and multi-pool fire dynamics, with particular focus on recent advances in this century. As the fundamentals of pool fires, the theoretical progress made with regard to burning rates, air entrainment&lt;span&gt;&lt;span&gt;, flame pulsation, the morphological characteristics of flames, radiation, and the dimensional modelling are reviewed first, followed by new insights into the fluid mechanics involved, radiative heat transfer and &lt;/span&gt;combustion modeling. With regard to the scale effect, recent experimental and theoretical advances in internal thermal transport and fluid motions within the liquid-phase fuel, lip height effects, and heat transfer blockage are summarized systematically. Furthermore, new understandings of aspects including heat feedback and the burning rate, flame tilt, flame length and instability, flame sag and base drag, and soot and radiation behavior under wind, pressure and gravity effects are reviewed. The growing research into the onset and the merging dynamics of multiple pool fires in the last decade is described in the last section, this research will be helpful in the mitigation of threatening outdoor massive (group) fires. This review provides a state-of-the-art survey of the knowledge gained through decades of research into this topic, and concludes by discussing the challenges and prospects with regard to the complex coupling effects of heat transfer, with the fluid and combustion mechanics of pool fires in future work.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"95 ","pages":"Article 101070"},"PeriodicalIF":29.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1752265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信