Progress in Crystal Growth and Characterization of Materials最新文献

筛选
英文 中文
Growth, characterization and performance of bulk and nanoengineered molybdenum oxides for electrochemical energy storage and conversion 用于电化学储能和转换的大块和纳米氧化钼的生长、表征和性能
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2021-08-01 DOI: 10.1016/j.pcrysgrow.2021.100533
C.V. Ramana , A. Mauger , C.M. Julien
{"title":"Growth, characterization and performance of bulk and nanoengineered molybdenum oxides for electrochemical energy storage and conversion","authors":"C.V. Ramana , A. Mauger , C.M. Julien","doi":"10.1016/j.pcrysgrow.2021.100533","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100533","url":null,"abstract":"<div><p>Molybdenum oxides (MoO<sub>y</sub>) exhibit quite interesting structural, chemical, electrical, optical and electrochemical properties, which are often dependent on the synthetic procedures and fabrication conditions. The MoO<sub>y</sub> materiails are promising in numerous current and emerging technological applications, which include nanoelectronics, optoelectronics, energy storage and micromechanics. However, fundamental understanding of the crystal structure and engineering the phase and microstructure is the key to achieving the desired properties and performance in all of these applications. Therefore, in this review, an attempt made to provide a comprehensive review by considering the illustrative examples to highlight the fundamental scientific issues, challenges, and opportunities as related to various Mo-oxides applicable to electrochemical energy applications. In the course of development of lithium batteries delivering high-power and high-energy density for powering electric vehicles, here in this paper, we examine the performances of Mo-oxides, which are candidates as electrodes materials primarily for lithium-ion batteries (LIBs), while some aspects considered in sodium-ion batteries (SIBs) or electrochemical supercapacitors (ECs). Due to the wide range of oxidation states (from +6 to +2) they are promising as both positive (cathode) and negative (anode) electrodes of electrochemical cells. Based on their specific structural, chemical, electrical, and optical properties, which are dependent on the growth conditions and the fabrication technique, this review highlights the progress made in improving and understanding the electrochemical performance of MoO<sub>y</sub> compounds. Various materials (2.0 ≤ <em>y</em> ≤ 3.0) including anhydrous, hydrates, nanorods, nanobelts, composites and thin films of MoO<sub>y</sub> are considered. Due to their higher oxidation states, MoO<sub>y</sub> compounds undergo reversible topotactic lithium intercalation reactions; however, electrochemical features appear strongly dependent on the crystal quality and structural arrangement in the host lattice. Using <em>in-situ</em> and <em>ex-situ</em> X-ray diffraction and Raman spectroscopic data, structural characteristics of various MoO<sub>y</sub> are discussed. While the reasons for first-cycle irreversible capacity losses identified and discussed elaborately, the approaches adopted for enhanced performance and/or improvements also summarized. Several sub-stoichiometric MoO<sub>y</sub> positive electrodes exhibit excellent cycle life (up to 300 cycles) with high initial coulombic efficiency (80–90%) and large reversible capacity (>300 mAh g<sup>−1</sup>). Molybdenum oxides also categorized as one of the conversion-type transition-metal oxides and applied as negative electrodes for LIBs and SIBs with a specific capacity approaching 1000 mAh g<sup>−1</sup>. In addition to the discussion of the key aspects of crystal growth, characterization, an","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 3","pages":"Article 100533"},"PeriodicalIF":5.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100533","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3389023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Progress in-situ synthesis of graphitic carbon nanoparticles with physical vapour deposition 物理气相沉积原位合成石墨碳纳米颗粒的研究进展
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2021-08-01 DOI: 10.1016/j.pcrysgrow.2021.100534
Abdul Wasy Zia , Martin Birkett , Mohsin Ali Badshah , Munawar Iqbal
{"title":"Progress in-situ synthesis of graphitic carbon nanoparticles with physical vapour deposition","authors":"Abdul Wasy Zia ,&nbsp;Martin Birkett ,&nbsp;Mohsin Ali Badshah ,&nbsp;Munawar Iqbal","doi":"10.1016/j.pcrysgrow.2021.100534","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100534","url":null,"abstract":"<div><p><span>Graphitic carbon nanoparticles<span> are in high demand for sensing, health care, and manufacturing industries. Physical vapour deposition (PVD) methods are advantageous for </span></span><em>in-situ</em><span><span> synthesis of graphitic carbon particles<span> due to their ability to produce large area distributions. However, the carbon particles can agglomerate, irrespective of the PVD method, and form coagulated structures while growing inside the vacuum chamber. The random shapes and sizes of these particles lead to non-uniform properties and characteristics, hence making them less attractive for numerous industrial applications, such as energy storage batteries and </span></span>structural health monitoring. Therefore, the </span><em>in-situ</em> synthesis of isolated carbon particles produced in a single-step PVD process having control over size, shape, and large area distributions has remained inspiring for the past 30 years. This article gives an overview of characteristics, applications, industrial impact, and global revenue of graphite particles. A critical review on <em>in-situ</em> growth of graphitic carbon particles with different PVD methods is described with selected examples. A comprehensive summary compares the capability of different PVD techniques and corresponding carbon resources to produce graphitic particles with numerous sizes and shapes. Analysing the outputs of various PVD methods, a generalised four-stage model is explained to understand the <em>in-situ</em> growth of graphitic carbon particles, which start from seedings and grow as particles, clusters, and granular structures. It is concluded that the isolated carbon particles can be produced with specific size, shape, and distributions irrespective of the PVD method employed, by maintaining precise control over combinations of deposition system properties and process parameters.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 3","pages":"Article 100534"},"PeriodicalIF":5.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Sapphire waveguides and fibers for terahertz applications 太赫兹应用的蓝宝石波导和光纤
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2021-08-01 DOI: 10.1016/j.pcrysgrow.2021.100523
G.M. Katyba , K.I. Zaytsev , I.N. Dolganova , N.V. Chernomyrdin , V.E. Ulitko , S.N. Rossolenko , I.A. Shikunova , V.N. Kurlov
{"title":"Sapphire waveguides and fibers for terahertz applications","authors":"G.M. Katyba ,&nbsp;K.I. Zaytsev ,&nbsp;I.N. Dolganova ,&nbsp;N.V. Chernomyrdin ,&nbsp;V.E. Ulitko ,&nbsp;S.N. Rossolenko ,&nbsp;I.A. Shikunova ,&nbsp;V.N. Kurlov","doi":"10.1016/j.pcrysgrow.2021.100523","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100523","url":null,"abstract":"<div><p><span>Sapphire shaped crystals are considered as a favorable material platform of the terahertz (THz) waveguide<span> and fiber optics. Unique physical properties of sapphire, along with advantages of the Edge-defined Film-fed Growth (EFG) technique, yield fabrication of the THz waveguides and fibers with a complex cross-section geometry directly from the Al</span></span><sub>2</sub>O<sub>3</sub><span><span>-melt, where no labour-intensive mechanical processing is required. Wide variability of the as-grown sapphire shaped crystal geometries yields different physical mechanisms of electromagnetic waveguidance. In this review, recent advantages in the THz waveguides and fibers based on the EFG-grown sapphire shaped crystals are discussed. While possessing moderate THz-wave absorbtion and quite high dispersion, flexible sapphire fibers with a simple step-index cross-section geometry yield strong confinement of guided modes in a fiber core due to a high </span>refractive index<span> of sapphire in the THz range. This effect opens novel opportunities of sapphire fibers in high-resolution THz imaging, using the principles of either scanning-probe near-field optical microscopy or optical fiber bundles. In turn, antiresonant and photonic crystal hard hollow-core waveguides demonstrate advanced optical performance, along with wide capabilities in THz endoscopy and sensing in harsh environments. This review highlights that the EFG-grown sapphire shaped crystals hold strong potential in different branches of THz optics.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 3","pages":"Article 100523"},"PeriodicalIF":5.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Editorial Board 编辑委员会
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2021-08-01 DOI: 10.1016/s0960-8974(21)00028-0
{"title":"Editorial Board","authors":"","doi":"10.1016/s0960-8974(21)00028-0","DOIUrl":"https://doi.org/10.1016/s0960-8974(21)00028-0","url":null,"abstract":"","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"1 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0960-8974(21)00028-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43957932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films 六方氮化硼的合成:从块状晶体到原子薄膜
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2021-05-01 DOI: 10.1016/j.pcrysgrow.2021.100522
J. Marcelo J. Lopes
{"title":"Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films","authors":"J. Marcelo J. Lopes","doi":"10.1016/j.pcrysgrow.2021.100522","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100522","url":null,"abstract":"<div><p><span><span>Hexagonal boron nitride<span> (h-BN) is a wide band gap layered material that is promising for a plethora of applications ranging from neutron detection to quantum information processing. Moreover, it has become highly relevant in the field of two-dimensional crystals and their van der Waals </span></span>heterostructures<span> due to its multiple functionality as substrate, encapsulation layer, tunneling barrier, or dielectric<span> layer in various device schemes. Hence, controlled synthesis of h-BN has been intensively pursued aiming at its future implementation into different technologies. Herein, recent progress in growth of h-BN, either as bulk crystals or large-area thin films with thicknesses varying from tens of micrometers down to a single atomic layer, is reviewed. A general description of the main methods utilized including their technical aspects is presented in conjunction with the discussion of the </span></span></span>material properties determined using well-established characterization tools. Also the main challenges and application prospects of each growth approach are addressed.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 2","pages":"Article 100522"},"PeriodicalIF":5.1,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100522","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3389025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Bulk single crystals of β-Ga2O3 and Ga-based spinels as ultra-wide bandgap transparent semiconducting oxides β-Ga2O3和ga基尖晶石体单晶作为超宽带隙透明半导体氧化物
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2021-02-01 DOI: 10.1016/j.pcrysgrow.2020.100511
Zbigniew Galazka , Steffen Ganschow , Klaus Irmscher , Detlef Klimm , Martin Albrecht , Robert Schewski , Mike Pietsch , Tobias Schulz , Andrea Dittmar , Albert Kwasniewski , Raimund Grueneberg , Saud Bin Anooz , Andreas Popp , Uta Juda , Isabelle M. Hanke , Thomas Schroeder , Matthias Bickermann
{"title":"Bulk single crystals of β-Ga2O3 and Ga-based spinels as ultra-wide bandgap transparent semiconducting oxides","authors":"Zbigniew Galazka ,&nbsp;Steffen Ganschow ,&nbsp;Klaus Irmscher ,&nbsp;Detlef Klimm ,&nbsp;Martin Albrecht ,&nbsp;Robert Schewski ,&nbsp;Mike Pietsch ,&nbsp;Tobias Schulz ,&nbsp;Andrea Dittmar ,&nbsp;Albert Kwasniewski ,&nbsp;Raimund Grueneberg ,&nbsp;Saud Bin Anooz ,&nbsp;Andreas Popp ,&nbsp;Uta Juda ,&nbsp;Isabelle M. Hanke ,&nbsp;Thomas Schroeder ,&nbsp;Matthias Bickermann","doi":"10.1016/j.pcrysgrow.2020.100511","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100511","url":null,"abstract":"<div><p><span>In the course of development of transparent semiconducting oxides (TSOs) we compare the growth and basic physical properties bulk single crystals of ultra-wide bandgap (UWBG) TSOs, namely β-Ga</span><sub>2</sub>O<sub>3</sub> and Ga-based spinels MgGa<sub>2</sub>O<sub>4</sub>, ZnGa<sub>2</sub>O<sub>4</sub>, and Zn<sub>1-x</sub>Mg<sub>x</sub>Ga<sub>2</sub>O<sub>4</sub><span>. High melting points of the materials of about 1800 -1930 °C and their thermal instability, including incongruent decomposition of Ga-based spinels, require additional tools to obtain large crystal volume of high structural quality that can be used for electronic and optoelectronic devices. Bulk β-Ga</span><sub>2</sub>O<sub>3</sub><span> single crystals were grown by the Czochralski method with a diameter up to 2 inch, while the Ga-based spinel single crystals either by the Czochralski, Kyropoulos-like, or vertical gradient freeze / Bridgman methods with a volume of several to over a dozen cm</span><sup>3</sup><span>. The UWBG TSOs discussed here have optical bandgaps of about 4.6 - 5 eV and great transparency in the UV / visible spectrum<span>. The materials can be obtained as electrical insulators, </span></span><em>n</em>-type semiconductors, or <em>n</em><span>-type degenerate semiconductors. The free electron concentration (</span><em>n<sub>e</sub></em>) of bulk β-Ga<sub>2</sub>O<sub>3</sub> crystals can be tuned within three orders of magnitude 10<sup>16</sup> - 10<sup>19</sup> cm<sup>−3</sup><span> with a maximum Hall electron mobility (</span><em>μ</em>) of 160 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>, that gradually decreases with <em>n<sub>e</sub></em>. In the case of the bulk Ga-based spinel crystals with no intentional doping, the maximum of <em>n<sub>e</sub></em> and <em>μ</em> increase with decreasing the Mg content in the compound and reach values of about 10<sup>20</sup> cm<sup>−3</sup> and about 100 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> (at <em>n<sub>e</sub></em> &gt; 10<sup>19</sup> cm<sup>−3</sup>), respectively, for pure ZnGa<sub>2</sub>O<sub>4</sub>.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 1","pages":"Article 100511"},"PeriodicalIF":5.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2324713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Disk-driven flows and interface shape in vertical Bridgman growth with a baffle 带挡板的垂向Bridgman生长中的盘状驱动流动和界面形状
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2021-02-01 DOI: 10.1016/j.pcrysgrow.2020.100512
A.G. Ostrogorsky
{"title":"Disk-driven flows and interface shape in vertical Bridgman growth with a baffle","authors":"A.G. Ostrogorsky","doi":"10.1016/j.pcrysgrow.2020.100512","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100512","url":null,"abstract":"<div><p>In vertical Bridgman (VB) systems, the shape of the S-L interface greatly influences the yield and perfection of single crystal, because of the continuous contact with the crucible. The melt flows and the shape of the S-L interface are difficult to modify and control.</p><p>Baffles are flow-directing or obstructing devices. In VB melts, the baffles are disk shaped, and positioned horizontally above the solid-liquid (S-L) interface. The role of the baffle is to: i) minimize the thermally-driven convection ii) control/reduce the axial heat transfer to the S-L interface and iii) generate the disk-driven flows. Furthermore, the baffle acts as a partition, splitting the melt into: the <em>growth melt</em> below the baffle and the <em>feeding melt</em> above the baffle.</p><p><span>Forced convection is a practical alternative to the less feasible and reliable option of completely eliminating thermally-driven </span>unsteady flows<span>. In the Czochralski (CZ) process, the flow driven by crystal rotation is a key control parameter which the VB process lacks. Baffle rotation brings the CZ-like flow into the VB process. The disk-driven flows are optimal for various scientific and engineering applications because the laminar boundary layers at the disk surface are steady and have uniform thickness.</span></p><p><span>In VB melts, the thermal conductivity of the baffle and its rotation rate dominate the interface shape and thus the yield and perfection of single crystals. Under the rotating baffle, the effects of </span>natural convection can be made negligible in production size melts.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 1","pages":"Article 100512"},"PeriodicalIF":5.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties 用于高效中间波段光伏电池的稀氮III-V纳米线:材料要求、自组装方法和性能
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2020-11-01 DOI: 10.1016/j.pcrysgrow.2020.100510
Paola Prete , Nico Lovergine
{"title":"Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties","authors":"Paola Prete ,&nbsp;Nico Lovergine","doi":"10.1016/j.pcrysgrow.2020.100510","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100510","url":null,"abstract":"<div><p>This paper deals with dilute nitride<span> III-V (III-N-V) semiconductor nanowires and their synthesis by bottom-up (so-called self-assembly) methods for application to novel and high efficiency intermediate-band solar cells (IBSCs). Nanowire-IBSCs based on III-N-V compounds promise to overcome many of the limitations encountered so far in quantum-dots or planar-heterostructure IBSCs; indeed, thanks to the combination of IBSC functionality with the unique physical properties associated with nanowires-based devices, photovoltaic cells<span><span> with unprecedentedly high power conversion efficiency, simpler junction geometry, reduced structural constraints, low materials usage and fabrication costs could be conceived. The fabrication of III-N-V nanowire-IBSCs requires however, careful engineering of the inner nanowire-device structures to comply with both IBSC stringent operational requirements and the peculiar physical properties of III-N-V semiconductor alloys. Herewith, we propose for the first time perspective III-N-V core-multishell nanowire heterostructures as potential candidates to IBSC applications, their fabrication requiring however, precisely controlled self-assembly technologies. The present status of research on the topic is reviewed, focusing in particular on the bottom-up growth of III-N-V nanowires by </span>molecular beam<span><span> and metalorganic vapor phase epitaxy methods and properties of as-grown </span>nanostructures. Major results achieved in the current literature and open problems are presented and discussed, along with advantages and limitations of employed self-assembly methods for the fabrication of dilute nitride III-V based nanowire-IBSCs.</span></span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 4","pages":"Article 100510"},"PeriodicalIF":5.1,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Atomic-resolution structure imaging of defects and interfaces in compound semiconductors 化合物半导体中缺陷和界面的原子分辨率结构成像
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2020-11-01 DOI: 10.1016/j.pcrysgrow.2020.100498
David J. Smith
{"title":"Atomic-resolution structure imaging of defects and interfaces in compound semiconductors","authors":"David J. Smith","doi":"10.1016/j.pcrysgrow.2020.100498","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100498","url":null,"abstract":"<div><p>This review focuses on the use of atomic-resolution structure imaging in the transmission electron microscope<span><span> (TEM) to determine atomic arrangements at defects and interfaces in compound semiconductor (CS) thin films and heterostructures. The article begins with a brief overview of relevant sample preparation techniques and a short description of suitable TEM operating modes and some practical requirements for atomic-structure imaging. Atomically-resolved structural defects, including different types of dislocations associated with </span>stacking faults<span> and twin boundaries, are then described. Attention is directed towards isovalent and heterovalent heterostructures with several types of interfacial defects. Critical issues associated with assessing interface abruptness and chemical intermixing, which directly impact proposed CS device applications, are also considered. Finally, ongoing challenges and prospects for future atomic-resolution studies of CS materials are briefly discussed.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 4","pages":"Article 100498"},"PeriodicalIF":5.1,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2324710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Progress in Modeling of III-Nitride MOVPE iii -氮化物MOVPE模型研究进展
IF 5.1 2区 材料科学
Progress in Crystal Growth and Characterization of Materials Pub Date : 2020-08-01 DOI: 10.1016/j.pcrysgrow.2020.100486
Martin Dauelsberg , Roman Talalaev
{"title":"Progress in Modeling of III-Nitride MOVPE","authors":"Martin Dauelsberg ,&nbsp;Roman Talalaev","doi":"10.1016/j.pcrysgrow.2020.100486","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100486","url":null,"abstract":"<div><p><span>This review provides an introduction to III-Nitrides MOVPE process modeling and its application to the design and optimization of MOVPE processes. Fundamentals of the MOVPE process with emphasis on transport phenomena are covered. Numerical techniques to obtain solutions for the underlying governing equations are discussed, as well as approaches to describe multi-component </span>diffusion for typical regimes during MOVPE. Properties of common industrial MOVPE reactor types like close spaced showerhead reactors, rotating disk reactors and Planetary Reactors are compared in terms of underlying working principles and generic process parameter dependencies.</p><p><span>The main part of the paper is devoted to reviewing gas phase and surface reaction mechanisms during MOVPE. The process design in particular for MOVPE of III-Nitrides is determined by complex gas phase reaction kinetics. Advances in the modeling and predicting of these processes have contributed to understanding and controlling these phenomena in industrial scale MOVPE reactors. Detailed kinetics and simplified surface kinetic approaches describing the incorporation of constituents into multinary solid alloys are compared and a few application cases are presented. Differences in thermodynamic and kinetic properties of multi-layered structures of different compositions such as InGaN, AlGaN can cause enrichment of the adsorbed layer by certain group III atoms (indium in case of InGaN and </span>gallium in case of AlGaN) that translate into specific features of composition profiles along the growth direction.</p><p>An intrinsic feature of III-nitride materials is epitaxial strain that shows up in different forms during growth and affects both deposition kinetics and material quality. In case of InGaN MOVPE there is a strong interplay between indium<span><span> content and strain that has direct influence on distribution of material composition in the epitaxial layers and multi-layered structures. Epitaxial strain can relax via different routes such as nucleation and evolution of the extended defects (dislocations), layer cracking and roughening of the </span>surface morphology. Simulation approaches that address coupling of growth kinetics with strain and defect dynamics are discussed and exemplified.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 3","pages":"Article 100486"},"PeriodicalIF":5.1,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信